Ричард Фейнман - Том 2. Электромагнетизм и материя

Тут можно читать онлайн Ричард Фейнман - Том 2. Электромагнетизм и материя - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 2. Электромагнетизм и материя
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 2. Электромагнетизм и материя краткое содержание

Том 2. Электромагнетизм и материя - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Повторить : гл. 12 (вып. 1) «Характеристики силы»

Том 2. Электромагнетизм и материя - читать онлайн бесплатно полную версию (весь текст целиком)

Том 2. Электромагнетизм и материя - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Складывая три решения для электрического поля, мы видим, что его изменения с расстоянием х в данный момент t подобны изображенным на фиг. 20.3, б . Поле в точности отображает собой ток. Распределение поля в пространстве есть точное отражение изменений тока со временем, но только нарисованное задом наперед. По мере того как проходит время, вся картина перемещается наружу со скоростью с , так что получается ломтик полей, который движется к положительным х и хранит в себе всю историю перемен тока. Если бы мы находились где-то на расстоянии многих километров, мы могли бы лишь по изменению электрического или магнитного поля безошибочно рассказать, как менялся ток в источнике.

Заметьте также, что даже после того, как вся деятельность в источнике прекратилась и все заряды исчезли, а токи сошли на нет, наш ломтик полей продолжает свое путешествие через пространство. Получается распределение электрических и магнитных полей, которое существует независимо от токов и зарядов. Это и есть тот новый эффект, который следует из полной системы уравнений Максвелла. Мы можем, если нужно, представить только что проделанный анализ в строго математической форме, написав, что электрическое поле в данном месте и в данное время пропорционально току в источнике, но не в то же время, а в более ранний период [t-(x/с)]. Можно написать

Вас удивит если я скажу что мы уже выводили это уравнение раньше с другой - фото 1093

Вас удивит, если я скажу, что мы уже выводили это уравнение раньше (с другой точки зрения), когда говорили о теории показателя преломления. Тогда нам нужно было представить себе, какие поля создаст слой колеблющихся диполей в тонком плоском диэлектрике, если диполи приводятся в движение электрическим полем падающей электромагнитной волны. Задача наша состояла в расчете комбинированного поля начальной волны и волн, излучаемых колеблющимися диполями. Как же мы смогли тогда рассчитать поля, создаваемые движущимися зарядами, не зная уравнений Максвелла? Мы тогда приняли в качестве исходной (без вывода) формулу для полей излучения, создаваемых на больших расстояниях от ускоряемого точечного заряда. Если вы заглянете в гл. 31 (вып. 3), то увидите, что выражение (31.10) — это как раз наше выражение (20.3), которое мы только что написали. Хотя прежний наш вывод относился только к большим расстояниям от источника, теперь мы видим, что тот же результат верен и вблизи источника.

Сейчас мы хотим взглянуть в общем виде на поведение электрических и магнитных полей в пустом пространстве вдалеке от источников, т. е. от токов и зарядов. Очень близко от них (так близко, что источники за время запаздывания передачи не успевают сильно измениться) поля очень похожи на те, которые получились у нас в электростатике или магнитостатике. Но если перейти к таким большим расстояниям, что запаздывание станет заметным, то природа полей может радикально отличаться от тех решений, которые мы нашли. Когда поля значительно удаляются ото всех источников, они начинают в некотором смысле приобретать свой собственный характер. Так что мы вправе приступить к обсуждению поведения полей в области, где нет ни токов, ни зарядов.

Предположим, что нас интересует род полей, которые могут существовать в областях, где и ρ и j равны нулю. В гл. 18 мы видели, что физику уравнений Максвелла можно также выразить на языке дифференциальных уравнений для скалярного и векторного потенциалов:

204 205 Если ρ и jравны нулю то эти уравнения упрощаются 206 - фото 1094(20.4)

205 Если ρ и jравны нулю то эти уравнения упрощаются 206 207 Стало - фото 1095(20.5)

Если ρ и jравны нулю, то эти уравнения упрощаются:

206 207 Стало быть в пустом пространстве и скалярный потенциал φ и - фото 1096(20.6)

207 Стало быть в пустом пространстве и скалярный потенциал φ и каждая - фото 1097(20.7)

Стало быть, в пустом пространстве и скалярный потенциал φ, и каждая компонента векторного потенциала Аудовлетворяют одному и тому же математическому уравнению. Пусть буквой ψ (пси) мы обозначили любую из четырех величин φ, А х , А у , А z ; тогда нам нужно изучить общие решения уравнения

208 Его называют трехмерным волновым уравнением трехмерным потому что - фото 1098(20.8)

Его называют трехмерным волновым уравнением — трехмерным потому, что функция ψ может в общем случае зависеть от х, у и z и следует учитывать изменения по каждой из этих координат. Это становится ясным, если мы выпишем явно три члена оператора Лапласа:

209 В пустом пространстве электрические и магнитные поля Еи Втоже - фото 1099(20.9)

В пустом пространстве электрические и магнитные поля Еи Втоже удовлетворяют волновому уравнению. Так, поскольку B= × A, дифференциальное уравнение для Вможно получить, взяв ротор от уравнения (20.7). Раз лапласиан — это скалярный оператор, то порядок операций вычисления лапласиана и ротора можно переставлять:

Точно так же можно переставлять и вычисление rot и t Из этого мы - фото 1100

Точно так же можно переставлять и вычисление rot и ∂/∂ t :

Из этого мы получаем следующее дифференциальное уравнение для В 2010 Тем - фото 1101

Из этого мы получаем следующее дифференциальное уравнение для В:

2010 Тем самым выясняется что компонента магнитного поля Вудовлетворяет - фото 1102(20.10)

Тем самым выясняется, что компонента магнитного поля Вудовлетворяет трехмерному волновому уравнению. Подобно этому, из того факта, что Е=- φ- d A/ dt , следует, что электрическое поле Ев пустом пространстве удовлетворяет трехмерному волновому уравнению

2011 Все наши электромагнитные поля подчиняются одному и тому же уравнению - фото 1103(20.11)

Все наши электромагнитные поля подчиняются одному и тому же уравнению (20.8). Можно еще спросить: каково самое общее решение этого уравнения? Однако прежде, чем решать этот трудный вопрос, сначала посмотрим, что можно сказать в общем случае о тех решениях, в которых по у и по z ничего не меняется. (Всегда сначала беритесь за простые случаи, чтобы было видно, чего следует ожидать, а уж потом можете переходить к случаям посложней.) Предположим, что величина полей зависит только от х , так что по у и по z поля не меняются . Мы, следовательно, опять рассматриваем плоские волны и должны ожидать, что получатся те же результаты, что и в предыдущей главе. И мы действительно получим в точности те же самые ответы. Вы можете спросить: «Но зачем снова делать то же самое?» Это важно, во-первых, потому, что мы не доказали, что найденные нами волны представляют собой самое общее решение для плоских волн, и, во-вторых, потому что наши поля произошли от источника тока особого вида. Сейчас мы хотели бы выяснить такой вопрос: каков самый общий вид одномерной волны в пустом пространстве? Мы не узнаем этого, если будем рассматривать тот или иной источник особого вида, нам нужна большая общность. Кроме того, на этот раз мы будем работать не с интегральной формой уравнений, а с дифференциальной. Хотя итог одинаков, это прекрасный случай поупражняться в выкладках и убедиться в том, что не имеет значения, каким путем идти. Вы должны уметь действовать любым путем, потому что, наткнувшись на трудную задачу, вы часто обнаруживаете, что годится лишь один из многих способов расчета.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 2. Электромагнетизм и материя отзывы


Отзывы читателей о книге Том 2. Электромагнетизм и материя, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x