Ричард Фейнман - Том 2. Электромагнетизм и материя

Тут можно читать онлайн Ричард Фейнман - Том 2. Электромагнетизм и материя - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 2. Электромагнетизм и материя
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 2. Электромагнетизм и материя краткое содержание

Том 2. Электромагнетизм и материя - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Повторить : гл. 12 (вып. 1) «Характеристики силы»

Том 2. Электромагнетизм и материя - читать онлайн бесплатно полную версию (весь текст целиком)

Том 2. Электромагнетизм и материя - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

254 Раз оператор лапласиана оператор скалярный он может действовать и на - фото 89(2.54)

Раз оператор лапласиана —оператор скалярный, он может действовать и на вектор. Под этим мы подразумеваем, что он применяется к каждой компоненте вектора

Рассмотрим еще одну возможность h д в списке 245 Ротор от - фото 90

Рассмотрим еще одну возможность: ×( × h) [(д) в списке (2.45)]. Ротор от ротора можно написать иначе, если использовать векторное равенство (2.6)

255 Заменим в этой формуле Аи Воператором и положим C h Получится - фото 91(2.55)

Заменим в этой формуле Аи Воператором и положим C= h. Получится

Погодитека Здесь чтото не так Как и положено первые два члена векторы - фото 92

Погодите-ка! Здесь что-то не так. Как и положено, первые два члена — векторы (операторы утолили свою жажду), но последний член совсем не такой. Он все еще оператор. Ошибка в том, что мы не были осторожны и не выдержали нужного порядка членов. Вернувшись обратно, вы увидите, что (2.55) можно с равным успехом записать в виде

256 Такой порядок членов выглядит уже лучше Сделаем нашу подстановку в - фото 93(2.56)

Такой порядок членов выглядит уже лучше. Сделаем нашу подстановку в (2.56). Получится

257 С этой формулой уже все в порядке Она действительно правильна в чем вы - фото 94(2.57)

С этой формулой уже все в порядке. Она действительно правильна, в чем вы можете убедиться, расписав компоненты. Последний член — это лапласиан, так что с равным успехом можно написать

258 Из нашего списка 245 двойных мы разобрали все комбинации кроме в - фото 95(2.58)

Из нашего списка (2.45) двойных мы разобрали все комбинации, кроме (в), ( · h). В ней есть смысл, это — векторное поле, но больше сказать о ней нечего. Это просто векторное поле, которое может случайно возникнуть в каком-нибудь расчете.

Удобно будет все наши рассуждения свести теперь в таблицу:

259 Вы могли заметить что мы не пытались изобрести новый векторный оператор - фото 96(2.59)

Вы могли заметить, что мы не пытались изобрести новый векторный оператор × . Понимаете, почему?

§ 8. Подвохи

Мы применили наши знания обычной векторной алгебры к алгебре оператора . Здесь нужно быть осторожным, иначе легко напутать. Нужно упомянуть о двух подвохах (впрочем, в нашем курсе они не встретятся). Что можете вы сказать о следующем выражении, куда входят две скалярные функции ψ и φ (фи):

Том 2 Электромагнетизм и материя - изображение 97

Вы можете подумать, что это нуль, потому что оно похоже на

Том 2 Электромагнетизм и материя - изображение 98

а это всегда равно нулю (векторное произведение двух одинаковых векторов А× Авсегда нуль). Но в нашем примере два оператора отнюдь не одинаковы! Первый действует на одну функцию, ψ, а второй — на другую, φ. И хотя мы изображаем их одним и тем же значком , они все же должны рассматриваться как разные операторы. Направление ψ зависит от функции ψ, а направление φ — от функции φ, так что они не обязаны быть параллельными:

К счастью к таким выражениям мы прибегать не будем Но сказанное нами не - фото 99

К счастью, к таким выражениям мы прибегать не будем. (Но сказанное нами не меняет того факта, что φ× ψ=0 в любом скалярном поле: здесь обе действуют на одну и ту же функцию.) Подвох номер два (он тоже в нашем курсе не встретится): правила, которые мы здесь наметили, выглядят просто и красиво только в прямоугольных координатах. Например, если мы хотим написать x-компоненту выражения 2 h, то сразу пишем

260 Но это выражение не годится если мы ищем радиальную компоненту 2 h - фото 100(2.60)

Но это выражение не годится , если мы ищем радиальную компоненту 2 h. Она не равна 2h r. Дело в том, что в алгебре векторов все их направления полностью определены. А когда мы имеем дело с векторными полями, то их направления в разных местах различны. Когда мы пробуем описать векторное поле, например, в полярных координатах, то «радиальное» направление меняется от точки к точке. И начав дифференцировать компоненты, вы запросто можете попасть в беду. Даже в постоянном векторном поле радиальная компонента от точки к точке меняется.

Обычно безопаснее и проще всего держаться прямоугольных координат. Но стоит упомянуть и одно исключение: поскольку лапласиан ∇ 2есть скаляр, то можно писать его в любой системе координат (скажем, в полярных координатах). Но так как это дифференциальный оператор, то применять его надо только к векторам с фиксированным направлением компонент, т. е. к заданным в прямоугольных координатах. Итак, расписывая наши векторные дифференциальные уравнения покомпонентно, мы будем предварительно выражать все наши векторные поля через их х -, у -, z-компоненты.

Глава 3 ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ВЕКТОРОВ

§ 1. Векторные интегралы; криволинейный интеграл от ∇ψ

В предыдущей главе мы видели, что брать производные от поля можно по-разному. Одни приводят к векторным полям; другие — к скалярным. Хотя формул было выведено довольно много, все их можно подытожить одним правилом: операторы ∂/∂ x , ∂/∂ y и ∂/∂ z суть три компоненты векторного оператора . Сейчас нам хотелось бы лучше разобраться в значении производных поля. Тогда мы легче почувствуем смысл векторных уравнений поля.

Мы уже говорили о смысле операции градиента ( на скаляр). Обратимся теперь к смыслу операций вычисления дивергенции (расходимости) и ротора (вихря). Толкование этих величин лучше всего сделать на языке векторных интегралов и уравнений, связывающих эти интегралы. Но уравнения эти, к несчастью, нельзя вывести из векторной алгебры при помощи каких-либо легких подстановок, так что вам придется учить их как что-то новое. Одна из этих интегральных формул практически тривиальна, а другие две — нет. Мы выведем их и поясним их смысл. Эти формулы фактически являются математическими теоремами. Они полезны не только для толкования смысла и содержания понятий дивергенции и ротора, но и при разработке общих физических теорий. Для теории полей эти математические теоремы — все равно что теорема о сохранении энергии для механики частиц. Подобные теоремы общего характера очень важны для более глубокого понимания физики. Но вы увидите, что, за немногими простыми исключениями, они мало что дают для решения задач. К счастью, как раз в начале нашего курса многие простые задачи будут решаться именно этими тремя интегральными формулами. Позже, однако, когда задачи станут потруднее, этими простыми методами мы больше обойтись не сможем.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 2. Электромагнетизм и материя отзывы


Отзывы читателей о книге Том 2. Электромагнетизм и материя, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x