Ричард Фейнман - Том 2. Электромагнетизм и материя
- Название:Том 2. Электромагнетизм и материя
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - Том 2. Электромагнетизм и материя краткое содержание
Том 2. Электромагнетизм и материя - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
(25.30)
Не правда ли, удивительно простое уравнение! Конечно, нужно еще знать, что обозначает символ ⋃. Это физическая величина, которую мы будем называть «несообразностью» [33] В английском оригинале «unworldliness». — Прим. ред.
ситуации. У нас даже есть для нее формула. Вот как вычисляется эта несообразность: вы берете все физические законы и записываете их в особой форме. Например, вы взяли закон механики F= m aи записали его в виде F- m a=0.
Теперь вы можете величину ( F- m а), которая, разумеется, в нашем мире должна быть нулем, назвать «несообразностью» механики. Затем вы берете квадрат этой несообразности, обозначаете его через ⋃ 1и называете ее «механической несообразностью». Другими словами, вы берете
(25.31)
потом выписываете второй физический закон, скажем ∇· Е=ρ/ε 0, и определяете
который можно назвать «гауссовой электрической несообразностью». Продолжая этот процесс, вы можете ввести ⋃ 3, ⋃ 4и т. д. для каждого из физических законов.
Наконец, полной несообразностью мира ⋃вы называете сумму ⋃ iдля каждого из различных явлений, т. е. ⋃=2∑ i ⋃ i.
И тогда «великий закон природы» гласит:
(25.32)
Этот «закон», разумеется, утверждает лишь, что сумма квадратов всех отдельных отклонений равна нулю, однако единственный способ сделать сумму квадратов множества членов равной нулю — это приравнять нулю каждое из ее слагаемых.
Таким образом, «удивительно простой закон» (25.32) эквивалентен целому ряду уравнений, которые вы писали первоначально. Поэтому совершенно очевидно, что простые обозначения, скрывающие сложности за определением символов,— это еще не истинная простота. Это только трюк . Так и в выражении (25.32) за кажущейся простотой скрывается несколько уравнений; это снова не более чем трюк. Развернув их, вы снова получите то, что было раньше.
Однако закон электродинамики, написанный в форме уравнения (25.29), содержит нечто большее, чем простую запись; в векторном анализе, кроме простоты записи, также есть нечто большее. Тот факт, что уравнения электромагнетизма можно записать в особых обозначениях, которые специально приспособлены для четырехмерной геометрии преобразований Лоренца, иначе говоря, как векторные уравнения в четырехмерном мире, означает, что они инвариантны относительно преобразований Лоренца. Именно потому, что уравнения Максвелла инвариантны относительно этих преобразований, их можно записать в столь красивом виде.
В том, что законы электродинамики можно записать в форме элегантного уравнения (25.29), нет ничего случайного. Теория относительности была развита именно потому, что экспериментально подтвердилась неизменность предсказанных уравнением Максвелла явлений в любой инерциальной системе. Именно при изучении трансформационных свойств уравнений Максвелла Лоренц открыл свои преобразования как преобразования, оставляющие инвариантными эти уравнения.
Однако есть и другая причина записывать уравнения в таком виде. Было обнаружено, что все законы физики должны быть инвариантными относительно преобразований Лоренца (первый об этом догадался Эйнштейн). Таково содержание принципа относительности. Поэтому если вы изобрели обозначения, которые сразу же показывают, инвариантен ли выписанный нами закон, то можно гарантировать, что при попытке создать новую теорию вы будете писать только уравнения, согласующиеся с принципом относительности.
В простоте уравнений Максвелла в этих частных обозначениях никакого чуда нет. Обозначения специально были придуманы именно для них. Самая интересная с физической точки зрения вещь состоит в том, что любой физический закон (будь то распространение мезонных волн, или поведение нейтрино в β-распаде, или что-то другое) должен иметь ту же самую инвариантность относительно тех же преобразований. Так что если ваш звездолет движется с постоянной скоростью, то все законы природы вместе преобразуются так, что никаких новых явлений не возникает. Именно благодаря тому, что принцип относительности является законом природы, уравнения нашего мира в четырехмерных обозначениях должны выглядеть гораздо проще.
Глава 26 ЛОРЕНЦЕВЫ ПРЕОБРАЗОВАНИЯ ПОЛЕЙ
Повторить: гл. 20 «Решение уравнений Максвелла в пустом пространстве»
§ 1. Четырехмерный потенциал движущегося заряда
В предыдущей главе мы видели, что потенциал A μ=(φ, А) является четырехвектором. Его временной компонентой служит скалярный потенциал φ, а тремя пространственными компонентами— векторный потенциал А. Используя преобразования Лоренца, мы нашли также потенциал частицы, движущейся прямолинейно с постоянной скоростью. (В гл. 21 то же самое было сделано несколько иным методом.) Для точечного заряда, координаты которого в момент t равны ( vt , 0, 0), потенциалы в точке ( х, у, z ) имеют вид
(26.1)
Уравнения (26.1) дают потенциалы в точке х, у, z в момент t , возникающие от движущегося заряда, «истинное» положение которого (имеется в виду положение в момент времени t ) x = vt . Заметьте, что в уравнение входят координаты ( x - vt ), у и z , которые являются координатами относительно переменного положения Р движущегося заряда (фиг. 26.1).
Фиг. 26.1. Определение полей в точке P от заряда q, движущегося вдоль оси x с постоянной скоростью v. (Поле в точке (x, y, z) в «настоящий момент» можно выразить как через «истинное» положение P так и через «запаздывающее» положение P' (т. е. положение в момент t'=t-r'/c).
Но, как вы знаете, истинное влияние распространяется на самом деле со скоростью с, так что поле в точке определяется на самом деле запаздывающим положением заряда Р ', координата х которого равна vt ' (где t '= t - r '/ с — «запаздывающее» время» [34] Штрих используется здесь для обозначения запаздывающего положения и времени; не путайте его со штрихом в предыдущей главе, обозначавшим систему отсчета, подвергнутую преобразованиям Лоренца.
.) Нам, однако, известно, что заряд двигался с постоянной скоростью по прямой линии, поэтому естественно, что поведение в точке Р ' непосредственно связано с переменным положением заряда. Фактически, если мы добавим предположение, что потенциалы зависят только от положения и скорости в запаздывающий момент, тогда уравнение (26.1) будет представлять собой полную формулу для потенциалов заряда, движущегося любым образом. Вот как все это работает. Пусть у вас имеется заряд, движущийся каким-то произвольным образом, скажем, по траектории, изображенной на фиг. 26.2, и вы пытаетесь найти потенциал в точке ( х, у, z ).
Интервал:
Закладка: