Ричард Фейнман - Том 2. Электромагнетизм и материя

Тут можно читать онлайн Ричард Фейнман - Том 2. Электромагнетизм и материя - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 2. Электромагнетизм и материя
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 2. Электромагнетизм и материя краткое содержание

Том 2. Электромагнетизм и материя - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Повторить : гл. 12 (вып. 1) «Характеристики силы»

Том 2. Электромагнетизм и материя - читать онлайн бесплатно полную версию (весь текст целиком)

Том 2. Электромагнетизм и материя - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Решение уравнения в этом случае имеет вид

Другая возможность допускающая состояние равновесия это когда ρ зависит - фото 2361

Другая возможность, допускающая состояние равновесия, — это когда ρ зависит только от р . Однако на этом мы расстанемся с гидростатикой, ибо она не так интересна, как движущаяся жидкость.

§ 2. Уравнение движения

Сначала обсудим движение жидкости с чисто абстрактной теоретической стороны, а затем рассмотрим некоторые частные примеры. Чтобы описать движение жидкости, мы должны задать в каждой точке ее некие свойства. Например, вода (будем называть жидкость просто «водой») в разных местах движется с различными скоростями . Следовательно, чтобы определить характер потока, мы должны в каждой точке и в любой момент времени задать три компоненты скорости. Если нам удастся найти уравнения, определяющие скорость, то мы будем знать, как в любой момент движется жидкость. Но скорость — не единственная характеристика жидкости, которая меняется от точки к точке. Только что мы изучали изменение давления от точки к точке. А есть еще и другие переменные. От точки к точке может меняться также плотность . Вдобавок жидкость может быть проводником и переносить электрический ток , плотность которого jизменяется от точки к точке как по величине, так и по направлению. От точки к точке может меняться температура, магнитное поле и т. д. Так что число полей, необходимых для полного описания ситуации, зависит от сложности задачи. Очень интересные явления возникают, когда доминирующую роль в определении поведения жидкости играют токи и магнетизм. Эта наука носит название магнитогидродинамика . В настоящее время ей уделяется очень большое внимание. Но мы не собираемся рассматривать эти весьма сложные случаи, ибо имеется немало менее сложных, но столь же интересных явлений, и даже этот более элементарный уровень будет достаточно труден.

Возьмем случай, когда нет ни магнитного поля, ни проводимости и нам, кроме того, не следует беспокоиться о температурах, ибо мы предположим, что температура в любой точке единственным образом определяется плотностью и давлением. Фактически мы уменьшим сложность нашей работы, допустив, что плотность постоянна, т. е. что жидкость существенно несжижаема. Другими словами, мы предполагаем, что изменения давлений настолько малы, что производимыми ими изменениями плотности можно пренебречь. Если бы это было не так, то в дополнение к явлениям, рассмотренным здесь, необходимо было бы учитывать и другие явления, скажем распространение звуковых или ударных волн. Распространение звуковых и ударных волн мы уже в какой-то степени изучали, так что при нашем рассмотрении гидродинамики мы изолируемся от этих явлений, допустив, что приближенно плотность ρ постоянная. Легко определить, когда такое предположение о постоянстве ρ будет хорошим. Если скорость потока гораздо меньше скорости звуковой волны, то нам не нужно заботиться об изменениях плотности. Тот факт, что вода ускользает от нас при попытке понять ее, не связан с этим приближением постоянной плотности. Усложнения, которые все-таки позволили ей остаться непонятой, мы обсудим в следующей главе.

Общую теорию жидкостей мы должны начать с уравнения состояния жидкости, связывающего давление и плотность; в нашем приближении оно имеет очень простой вид:

Том 2 Электромагнетизм и материя - изображение 2362

Это и есть первое уравнение для наших переменных. Следующее соотношение выражает сохранение вещества. Когда вещество утекает из какой-то точки, то количество его в этой точке должно уменьшаться. Если скорость жидкости равна v, то масса, которая протекает за единичное время через единицу площади поверхности, равна нормальной к поверхности компоненте ρv. Подобное соотношение у нас получалось уже в теории упругости. Из знакомства с электричеством мы знаем также, что дивергенция такой величины определяется скоростью уменьшения плотности. Также и здесь уравнение

402 выражает сохранение массы жидкости это гидродинамическое уравнение - фото 2363(40.2)

выражает сохранение массы жидкости: это гидродинамическое уравнение непрерывности . В нашем приближении, т. е. в приближении несжимаемой жидкости, плотность ρ постоянна и уравнение непрерывности превращается просто в

Том 2 Электромагнетизм и материя - изображение 2364(40.3)

Дивергенция скорости жидкости v, как и магнитного поля В, равна нулю. (Гидродинамические уравнения очень часто оказываются аналогичными уравнениям электродинамики; вот почему мы сначала изучали электродинамику. Некоторые предпочитают другой путь, считая, что сначала следует изучать гидродинамику, чтобы потом было легче понять электричество. На самом же деле электродинамика гораздо проще, чем гидродинамика.)

Следующее уравнение мы получим из закона Ньютона; оно говорит нам, как происходит изменение скорости в результате действия сил. Произведение массы элемента объема жидкости на ускорение должно быть равно силам, действующим на этот элемент. Выбирая в качестве элемента объема единичный объем и обозначая силу, действующую на единичный объем, через f, получаем

Плотность сил можно записать в виде суммы трех слагаемых Одно из них силу - фото 2365

Плотность сил можно записать в виде суммы трех слагаемых. Одно из них, силу давления на единицу объема — (∇ p ), мы уже рассматривали. Но есть еще действующие на расстоянии «внешние» силы, подобные тяжести или электричеству. Если эти силы консервативные с потенциалом, отнесенным к единице массы, равным φ, то они приводят к плотности сил —ρ(∇φ). (Если же внешние силы не консервативные, то мы вынуждены писать внешнюю силу, приходящуюся на единицу объема, как f внешн.) Кроме нее, на единицу объема действует еще одна «внутренняя» сила, которая возникает из-за того, что в текущей жидкости могут действовать сдвиговые силы. Они называются силами вязкости , и мы будем обозначать их через f вязк. Тогда наше уравнение движения приобретает вид

404 В этой главе мы будем предполагать что наша вода жидкая в том - фото 2366(40.4)

В этой главе мы будем предполагать, что наша вода «жидкая» в том смысле, что ее вязкость несущественна, так что слагаемое f вязкбудет опускаться. Выбрасывая слагаемое с вязкостью, мы делаем приближение, которое описывает некое идеальное вещество, а не реальную воду. Об огромной разнице, возникающей в зависимости от того, оставляем ли мы слагаемое с вязкостью или нет, в свое время хорошо знал Джон фон Нейманн. Известно ему было и то, что во времена наибольшего расцвета гидродинамики, т. е. примерно до 1900 г., основные усилия были направлены на решение красивых математических задач в рамках именно этого приближения, которое ничего не имеет общего с реальными жидкостями. Поэтому теоретиков, которые занимались подобными веществами, он называл людьми, изучающими «сухую воду». Они отбрасывали важнейшее свойство жидкости. Именно потому, что в этой главе мы при наших вычислениях тоже этим свойством будем пренебрегать, я озаглавил ее «Течение «сухой» воды». А обсуждение настоящей , «мокрой» воды мы отложим до следующей главы.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 2. Электромагнетизм и материя отзывы


Отзывы читателей о книге Том 2. Электромагнетизм и материя, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x