Ричард Фейнман - Том 2. Электромагнетизм и материя

Тут можно читать онлайн Ричард Фейнман - Том 2. Электромагнетизм и материя - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 2. Электромагнетизм и материя
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 2. Электромагнетизм и материя краткое содержание

Том 2. Электромагнетизм и материя - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Повторить : гл. 12 (вып. 1) «Характеристики силы»

Том 2. Электромагнетизм и материя - читать онлайн бесплатно полную версию (весь текст целиком)

Том 2. Электромагнетизм и материя - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Фиг. 40.10. Доказательство того что v не равно √2gh,

Если бы скорость истечения была в точности равна √2 gh , то выходящая вода должна была бы подняться вплоть до уровня воды в резервуаре. Однако на опыте она начинает падать несколько ниже его. Наше приближение оказывается очень грубым; вязкое трение, которое мы не учли в нашей формуле для сохранения энергии, приводит к потере энергии. Пытались ли вы когда-нибудь, дунув между двумя слипшимися листками бумаги, оторвать их друг от друга? Попытайтесь! Они сойдутся вновь. Причина, разумеется, состоит в том, что воздух между листами имеет большую скорость, нежели когда он выходит наружу. Поэтому давление между листами ниже атмосферного, и они вместо того, чтобы разлететься в разные стороны, соединятся.

§ 4. Циркуляция

В начале предыдущего параграфа мы видели, что если у нас есть безвихревая несжимаемая жидкость, то поток удовлетворяет следующим двум уравнениям:

4019 Эти уравнения аналогичны уравнениям электростатики или магнитостатики - фото 2401(40.19)

Эти уравнения аналогичны уравнениям электростатики или магнитостатики в пустом пространстве. При отсутствии зарядов дивергенция электрического поля равна нулю, а ротор электростатического поля всегда равен нулю. Ротор магнитного поля равен нулю при отсутствии токов, а дивергенция магнитного поля всегда равна нулю. Следовательно, уравнения (40.19) имеют такие же решения, как и уравнения для Ев электростатике или уравнения для Вв магнитостатике. Фактически в гл. 12, § 5 (вып. 5), мы уже решили задачу об обтекании сферы потоком в качестве электростатического аналога. Электростатическим аналогом является однородное электрическое поле плюс поле диполя, причем поле диполя подбирается таким, чтобы скорость потока, нормальная к поверхности сферы, была равна нулю. Задачу об обтекании цилиндра можно решить таким же способом, выбрав подходящее направление диполя относительно однородного потока. Эти решения справедливы в тех случаях, когда скорость жидкости на больших расстояниях постоянна как по величине, так и по направлению. Они изображены на фиг. 40.11,а.

Фиг 4011 Обтекание цилиндра идеальной жидкостью а циркуляция вокруг - фото 2402

Фиг. 40.11. Обтекание цилиндра идеальной жидкостью (а), циркуляция вокруг цилиндра (б) и cyпepрозuция случаев а и б (в).

Задача об обтекании цилиндра имеет и другое решение, когда условия таковы, что поток на больших расстояниях движется по окружности вокруг цилиндра. Тогда поток будет круговым повсюду (фиг. 40.11,б). У такого потока есть циркуляция вокруг цилиндра, хотя × v в жидкости остается нулем. Но как циркуляция может существовать без ротора? У нас есть циркуляция вокруг цилиндра, ибо криволинейный интеграл от v по замкнутой петле, охватывающей цилиндр, не равен нулю. В то же время криволинейный интеграл от v по любому замкнутому пути, который не охватывает цилиндра, будет нулем. Аналогичные вещи встречались нам и раньше, когда мы определяли магнитное поле вокруг проводника. Ротор Вбыл нулем вне провода, хотя криволинейный интеграл от Впо пути, охватывающему провод, не исчезает. Поле скоростей в безвихревой циркуляции вокруг цилиндра в точности такое же, как и магнитное поле вокруг провода. Для кругового пути с центром, совпадающим с центром цилиндра, криволинейный интеграл от скорости равен

Том 2 Электромагнетизм и материя - изображение 2403

Для безвихревого потока интеграл не должен зависеть от r. Обозначим его через постоянную С и получим

Том 2 Электромагнетизм и материя - изображение 2404(40.20)

где v — тангенциальная скорость, а r — расстояние от оси.

Существует очень хороший способ демонстрации циркуляции жидкости в трубе. Вы берете прозрачный цилиндрический резервуар с трубкой в центре дна. Наполняете его водой, немного раскручиваете ее палочкой и вынимаете пробку из отводной трубы. И получаете тот красивый эффект, который показан на фиг. 40.12.

Фиг 4012 Вода с циркуляцией вытекает из резервуара Подобное явление вы - фото 2405

Фиг. 40.12. Вода с циркуляцией вытекает из резервуара.

(Подобное явление вы наверняка много раз видели в ванне!) Хотя вначале вы и создали некоторую угловую скорость ω, она из-за вязкости вскоре затухает и поток становится безвихревым. Однако какая-то циркуляция вокруг трубки все же остается.

Из теории можно вычислить форму поверхности воды в цилиндре. По мере того как частицы движутся внутрь, они набирают скорость. Согласно уравнению (40.20), тангенциальная скорость увеличивается как 1/ r — просто благодаря закону сохранения момента количества движения, как у фигуриста, прижавшего руки к телу. Радиальная скорость тоже возрастает как 1/r. Если пренебречь тангенциальным движением, то получится, что вода идет внутрь по радиусу к отверстию, а из уравнения · v=0 следует, что радиальная скорость пропорциональна 1/r. Таким образом, полная скорость тоже возрастает как 1/r и вода идет по спирали Архимеда. Поверхность вода — воздух целиком находится под атмосферным давлением, так что, согласно уравнению (40.14), она должна обладать свойством

Но здесь v пропорционально 1r поэтому форма поверхности будет такой - фото 2406

Но здесь v пропорционально 1/r, поэтому форма поверхности будет такой:

Обратите внимание на одну интересную особенность которая наблюдается в случае - фото 2407

Обратите внимание на одну интересную особенность, которая наблюдается в случае несжимаемого безвихревого потока ( в общем случае ее нет): если у нас есть какое-то одно решение и какое-то второе решение, то сумма их тоже будет решением. Это справедливо потому, что уравнения (40.19) — линейные. Полный же набор гидродинамических уравнений, т. е. уравнений (40.8) — (40.10), не линеен, а это уже совсем другое дело. Однако для безвихревого потока вокруг цилиндра мы можем сложить один поток (фиг. 40.11,а) и другой поток (фиг. 40.11,б) и получить новый вид потока (фиг. 40.11,в). Этот новый поток особенно интересен. Скорость потока на верхней стороне цилиндра оказывается больше, чем на нижней , так что когда на циркуляцию вокруг цилиндра налагается чистый горизонтальный поток, то возникнет действующая на цилиндр вертикальная сила ; она называется подъемной силой . Разумеется, если циркуляция отсутствует, то в соответствии с нашей теорией «сухой» воды для любого тела суммарная сила обращается в нуль.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 2. Электромагнетизм и материя отзывы


Отзывы читателей о книге Том 2. Электромагнетизм и материя, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x