Ричард Фейнман - Том 2. Электромагнетизм и материя
- Название:Том 2. Электромагнетизм и материя
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - Том 2. Электромагнетизм и материя краткое содержание
Том 2. Электромагнетизм и материя - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
(10.23)
Последнее уравнение обычно записывается так:
(10.24)
где ε — еще одна постоянная, описывающая диэлектрические свойства материалов. Она также называется «проницаемостью». (Теперь вы понимаете, почему в наших уравнениях появилось ε 0, это «проницаемость пустого пространства».)
Очевидно,
(10.25)
Сейчас мы рассматриваем эти вещи уже с другой точки зрения, а именно что в вакууме всегда имеются самые простые уравнения, и если в каждом случае учесть все заряды, какова бы ни была причина их возникновения, то они всегда справедливы. Выделяя часть зарядов либо из соображений удобства, либо потому, что мы не хотим вникать в детали процесса, мы всегда можем при желании написать уравнения в любой удобной для нас форме.
Сделаем еще одно замечание. Уравнение D=ε Епредставляет собой попытку описать свойства вещества. Но вещество исключительно сложно по своей природе, и подобное уравнение на самом деле неправильно. Так, если Естановится очень большим, Dперестает быть пропорциональным Е. В некоторых веществах пропорциональность нарушается уже при достаточно слабых полях. Кроме того, «константа» пропорциональности может зависеть от того, насколько быстро Еменяется со временем. Следовательно, уравнение такого типа есть нечто вроде приближенного уравнения типа закона Гука. Оно не может быть глубоким, фундаментальным уравнением. С другой стороны, наши основные уравнения для Е(10.17) и (10.19) выражают наиболее полное и глубокое понимание электростатики.
§ 5. Поля и силы в присутствии диэлектриков
Мы докажем сейчас ряд довольно общих теорем электростатики для тех случаев, когда имеются диэлектрики. Мы уже видели, что емкость плоского конденсатора при заполнении его диэлектриком увеличивается в определенное число раз. Сейчас можно показать, что это верно для емкости любой формы, если вся область вокруг двух проводников заполнена однородным линейным диэлектриком. В отсутствие диэлектрика уравнения, которые требуется решить, такие:
Когда имеется диэлектрик, первое из этих уравнений изменяется, и мы получаем
(10.26)
Далее, поскольку мы считаем ϰ всюду одинаковой, последние два уравнения можно записать в виде
(10.27)
Следовательно, для ϰ Еполучаются такие же уравнения, как для Е 0, и тогда они имеют решение ϰ Е= Е 0. Другими словами, поле всюду в ϰ раз меньше, чем в отсутствие диэлектрика. Поскольку разность потенциалов есть линейный интеграл от поля, она уменьшится во столько же раз. А так как заряд на электродах конденсатора в обоих случаях тот же самый, то уравнение (10.2) говорит, что емкость в присутствии всюду однородного диэлектрика увеличивается в ϰ раз.
Зададимся теперь вопросом, как взаимодействуют два заряженных проводника в диэлектрике. Рассмотрим жидкий диэлектрик, повсюду однородный. Мы уже видели раньше, что один из способов найти силу — это продифференцировать энергию по соответствующему расстоянию. Если заряды на проводниках равны и противоположны по знаку, то энергия U = Q 2/2 C , где С — их емкость. С помощью принципа виртуальной работы любая компонента силы получается некоторым дифференцированием; например,
(10.28)
Поскольку диэлектрик увеличивает емкость в ϰ раз, все силы уменьшатся в такое же число раз.
Однако все это не так просто. Сказанное справедливо, только если диэлектрик жидкий. Любое перемещение проводников, окруженных твердым диэлектриком, изменяет условия механических напряжений в диэлектрике и его электрические свойства, а также несколько меняет механическую энергию диэлектрика. Движение проводников в жидкости не меняет свойств жидкости. Жидкость перетекает в другое место, но ее электрические свойства остаются неизменными.
Во многих старых книгах по электричеству изложение начинается с «основного» закона, по которому сила, действующая между двумя зарядами, есть
(10.29)
а эта точка зрения абсолютно неприемлема. Во-первых, это не всегда верно; это справедливо только в мире, заполненном жидкостью; во-вторых, так получается лишь для постоянного значения ϰ, что для большинства реальных материалов выполняется приближенно.
Гораздо легче начинать со всегда справедливого (для неподвижных зарядов) закона Кулона для зарядов в вакууме .
Что же происходит с зарядами в твердом теле? На это трудно ответить, потому что даже не вполне ясно, о чем идет речь. Если вы вносите заряды внутрь твердого диэлектрика, то возникают всякого рода давления и напряжения. Вы не можете считать работу виртуальной, не включив сюда также механическую энергию, необходимую для сжатия тела, а отличить однозначным образом электрические силы от механических, возникающих за счет самого материала, вообще говоря, очень трудно. К счастью, никому на самом деле не бывает нужно знать ответ на предложенный вопрос. Иногда нужно знать величину натяжений, которые могут возникнуть в твердом теле, а это можно вычислить. Но результаты здесь оказываются гораздо сложнее, чем простой ответ, полученный нами для жидкостей.
Неожиданно сложной оказывается следующая проблема в теории диэлектриков: почему заряженное тело подбирает маленькие кусочки диэлектрика? Если вы в сухой день причесываетесь, то ваша расческа потом легко будет подбирать маленькие кусочки бумаги. Если вы не вдумались в этот вопрос, то, вероятно, сочтете, что на расческе заряды одного знака, а на бумаге противоположного. Но бумага ведь была сначала электрически нейтральной. У нее нет суммарного заряда, а она все же притягивается. Правда, иногда бумажки подскакивают к расческе, а затем отлетают, сразу же отталкиваясь от нее. Причина, конечно, заключается в том, что, коснувшись расчески, бумага сняла с нее немного отрицательных зарядов, а одноименные заряды отталкиваются. Но это все еще не дает ответа на первоначальный вопрос. Прежде всего, почему бумажки вообще притягиваются к расческе?
Читать дальшеИнтервал:
Закладка: