Ричард Фейнман - Том 2. Электромагнетизм и материя

Тут можно читать онлайн Ричард Фейнман - Том 2. Электромагнетизм и материя - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 2. Электромагнетизм и материя
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 2. Электромагнетизм и материя краткое содержание

Том 2. Электромагнетизм и материя - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Повторить : гл. 12 (вып. 1) «Характеристики силы»

Том 2. Электромагнетизм и материя - читать онлайн бесплатно полную версию (весь текст целиком)

Том 2. Электромагнетизм и материя - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

что в точности совпадает по форме с (12.4). Задачи с постоянным потоком тепла и задачи электростатики одинаковы . Вектор потока тепла hсоответствует Е, а температура Т соответствует φ. Мы уже отмечали, что точечный тепловой источник создает поле температур, меняющееся, как 1/r, и поток тепла, меняющийся, как 1/r 2. Это есть не более чем простой перенос утверждений электростатики, что точечный заряд дает потенциал, меняющийся, как 1/r, и электрическое поле, меняющееся, как 1/r 2. Вообще мы можем решать статистические тепловые задачи с той же степенью легкости, как и задачи электростатики.

Рассмотрим простой пример. Пусть имеется цилиндр с радиусом а при температуре T 1, поддерживающейся за счет генерации тепла в цилиндре. (Это может быть, скажем, проволока, по которой течет ток, или трубка с конденсацией пара внутри цилиндра.) Цилиндр покрыт концентрической обшивкой из изолирующего материала с теплопроводностью К . Пусть внешний радиус изоляции равен b, а в наружном пространстве поддерживается температура T 2(фиг. 12. 1, а ).

Фиг 121 Поток тепла в случае цилиндрической симметрии а и соответствующая - фото 625

Фиг. 12.1. Поток тепла в случае цилиндрической симметрии (а) и соответствующая задача из электричества (б).

Нам нужно определить скорость потери тепла проволокой или паропроводом (все равно чем), проходящим по центру цилиндра. Пусть полное количество тепла, теряемого на длине трубы L , равно G, его-то мы и хотим найти.

Как надо решать такую задачу? У нас есть дифференциальные уравнения, но поскольку они такие же, как в электростатике, то математическое решение их нам уже известно. Аналогичная задача электростатики относится к проводнику радиусом а при потенциале φ 1, отделенном от другого проводника радиусом b при потенциале φ 2, с концентрическим слоем диэлектрика между ними (фиг. 12.1, б ). Далее, поскольку поток тепла hсоответствует электрическому полю Е, то наша искомая величина G соответствует потоку электрического поля от единичной длины (другими словами, электрическому заряду на единице длины, деленному на ε 0). Мы решали электростатическую задачу с помощью закона Гаусса. Нашу задачу о потоке тепла будем решать таким же способом.

Из симметрии задачи мы видим, что h зависит только от расстояния до центра. Поэтому мы окружим трубку гауссовой поверхностью — цилиндром длиной L и радиусом r. С помощью закона Гаусса мы выводим, что поток тепла h, умноженный на площадь поверхности 2πrL, должен быть равен полному количеству тепла, рождаемому внутри, т. е. тому, что мы назвали G :

129 Поток тепла пропорционален градиенту температуры или в данном случае - фото 626(12.9)

Поток тепла пропорционален градиенту температуры

или в данном случае величина hравна Вместе с 129 это дает 1210 - фото 627

или в данном случае величина hравна

Вместе с 129 это дает 1210 Интегрируя от rа до r b получаем - фото 628

Вместе с (12.9) это дает

1210 Интегрируя от rа до r b получаем 1211 Разрешая отнсительно G - фото 629(12.10)

Интегрируя от r=а до r = b , получаем

1211 Разрешая отнсительно G находим 1212 Этот результат в точности - фото 630(12.11)

Разрешая отнсительно G , находим

1212 Этот результат в точности соответствует формуле для заряда - фото 631(12.12)

Этот результат в точности соответствует формуле для заряда цилиндрического конденсатора:

Задачи одинаковые и имеют одинаковые решения Зная электростатику мы тем самым - фото 632

Задачи одинаковые и имеют одинаковые решения. Зная электростатику, мы тем самым знаем, сколько тепла теряет изолированная труба.

Рассмотрим еще один пример. Пусть мы хотим узнать поток тепла в окрестности точечного источника, расположенного неглубоко под поверхностью земли или же вблизи поверхности большого металлического предмета. В качестве локализованного источника тепла может быть и атомная бомба, которая взорвалась под землей и представляет собой мощный источник тепла, или же небольшой источник радиоактивности внутри железного блока — возможностей очень много.

Рассмотрим идеализированную задачу о точечном источнике тепла, мощность которого G , на расстоянии а под поверхностью бесконечной однородной среды с коэффициентом теплопроводности К . Теплопроводностью воздуха над поверхностью среды мы пренебрежем. Мы хотим определить распределение температуры на поверхности среды. Насколько горячо будет прямо над источником и в разных местах на поверхности?

Как же решить эту задачу? Она похожа на задачу по электростатике, в которой имеются два материала с разной диэлектрической проницаемостью ϰ по обе стороны от разделяющей их границы. Здесь что-то есть! Возможно, это похоже на точечный заряд вблизи границы между диэлектриком и проводником или что-нибудь вроде этого. Посмотрим, что происходит вблизи границы. Физическое условие состоит в том, что нормальная составляющая hна поверхности равна нулю , поскольку мы предположили, что потока из блока нет. Мы должны задать вопрос: в какой электростатической задаче возникает условие, что нормальная компонента электрического поля Е(представляющая собой аналог h) равна нулю у поверхности? Нет такой!

Это один из тех случаев, к которым следует относиться с осторожностью. По физическим причинам могут быть определенные ограничения тех математических условий, которые возникают в каком-либо случае. Поэтому если мы проанализировали дифференциальное уравнение только для некоторых ограниченных примеров, то вполне можем упустить ряд решений, возникающих в других физических условиях. Например, нет материала, обладающего диэлектрической проницаемостью, равной нулю, а теплопроводность вакуума равна нулю. Поэтому нет электростатического аналога идеального теплоизолятора. Мы можем, однако, попытаться использовать те же методы . Попробуем вообразить , что произошло бы, если бы диэлектрическая проницаемость была равна нулю. (Разумеется, в реальных условиях диэлектрическая проницаемость никогда не обращается в нуль. Но может представиться случай, когда вещество имеет очень большую диэлектрическую проницаемость, так что диэлектрической проницаемостью воздуха вне среды можно пренебречь.)

Как же найти электрическое поле, у которого нет составляющей, перпендикулярной к поверхности? Иначе говоря, такое поле, которое всюду касательно к поверхности? Вы заметите, что эта задача обратна задаче о точечном заряде вблизи проводящей плоскости. Там нам нужно было поле, перпендикулярное к поверхности, потому что проводник всюду находился при одном и том же значении потенциала.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 2. Электромагнетизм и материя отзывы


Отзывы читателей о книге Том 2. Электромагнетизм и материя, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x