Ричард Фейнман - Том 2. Электромагнетизм и материя

Тут можно читать онлайн Ричард Фейнман - Том 2. Электромагнетизм и материя - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 2. Электромагнетизм и материя
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 2. Электромагнетизм и материя краткое содержание

Том 2. Электромагнетизм и материя - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Повторить : гл. 12 (вып. 1) «Характеристики силы»

Том 2. Электромагнетизм и материя - читать онлайн бесплатно полную версию (весь текст целиком)

Том 2. Электромагнетизм и материя - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1218 Снова мы получили такое же уравнение как в электростатике Но на сей - фото 647(12.18)

Снова мы получили такое же уравнение, как в электростатике! Но на сей раз оно относится к двум измерениям. Смещение u соответствует φ, а f/τ соответствует ρ/ε 0. Поэтому тот труд, который мы потратили на бесконечные заряженные плоскости, или параллельные провода большой длины, или заряженные цилиндры, пригодится для натянутой мембраны.

Предположим, мы подтягиваем мембрану в каких-то точках на определенную высоту , т. е. фиксируем величину и в ряде точек. В электрическом случае это аналогично заданию определенного потенциала в соответствующих местах. Например, мы можем устроить положительный «потенциал», если подопрем мембрану предметом, который имеет такое же сечение, как и соответствующий цилиндрический проводник. Если, скажем, мы подопрем мембрану круглым стержнем, поверхность примет форму, изображенную на фиг. 12.6.

Фиг 126 Поперечное сечение натянутой резиновой пленки подпертой круглым - фото 648

Фиг. 12.6. Поперечное сечение натянутой резиновой пленки, подпертой круглым стержнем. Функция u(х, у) та же, что и потенциал φ(х, у) от очень длинного заряженного стержня.

Высота и имеет такой же вид, как электростатический потенциал φ заряженного цилиндрического стержня. Она спадает, как ln(1/r). ( Наклон поверхности, который соответствует электрическому полю Е, спадает, как 1/r.)

Натянутую резиновую пленку часто использовали для решения сложных электрических задач экспериментальным путем. Аналогия используется в обратную сторону! Для подъема мембраны на высоту, соответствующую потенциалам всего набора электродов, подставляют разные стержни и полоски. Затем измерения высоты дают электрический потенциал в электростатической задаче. Аналогия проводится даже еще дальше. Если на мембране поместить маленькие шарики, то их движение примерно схоже с движением электронов в соответствующем электрическом поле. Таким способом можно воочию проследить за движением «электронов» по их траекториям. Этот метод был использован для проектирования сложной системы многих фотоумножительных трубок (таких, например, какие используются в сцинтилляционном счетчике или для управления передними фарами в автомашине кадиллак). Метод используется и до сих пор, но его точность не очень велика. Для более точных расчетов лучше находить поле численным путем с помощью больших электронных вычислительных машин.

§ 4. Диффузия нейтронов; сферически-симметричный источник в однородной среде

Приведем еще один пример, дающий уравнение того же вида, но на сей раз относящееся к диффузии. В гл. 43 (вып. 4) мы рассмотрели диффузию ионов в однородном газе и диффузию одного газа сквозь другой. Теперь возьмем другой пример — диффузию нейтронов в материале типа графита. Мы выбрали графит (разновидность чистого углерода), потому что углерод не поглощает медленных нейтронов. Нейтроны путешествуют в нем свободно. Они проходят по прямой в среднем несколько сантиметров, прежде чем рассеются ядром и отклонятся в сторону. Так что если у нас есть большой кусок графита толщиной в несколько метров, то нейтроны, находившиеся сначала в одном месте, будут переходить в другие места. Мы опишем их усредненное поведение, т. е. их средний поток .

Пусть N ( x, у, z )ΔV — число нейтронов в элементе объема ΔV в точке ( х, у, z ). Движение нейтронов приводит к тому, что одни покидают ΔV, а другие попадают в него. Если в одной области оказывается нейтронов больше, чем в соседней, то оттуда их будет переходить во вторую область больше, чем наоборот; в результате возникнет поток. Повторяя доказательства, приведенные в гл. 43 (вып. 4), можно описать поток вектором потока J. Его компонента J x есть результирующее число нейтронов, проходящих в единицу времени через единичную площадку, перпендикулярную оси х . Мы получим тогда

Том 2 Электромагнетизм и материя - изображение 649(12.19)

где коэффициент диффузии D дается в терминах средней скорости v и средней длины свободного пробега l между столкновениями:

Том 2 Электромагнетизм и материя - изображение 650

Векторное уравнение для Jимеет вид

1220 Скорость с которой нейтроны проходят через некоторый элемент - фото 651(12.20)

Скорость, с которой нейтроны проходят через некоторый элемент поверхности da , равна J· n da (где n, как обычно,— единичный вектор нормали). Результирующий поток из элемента объема тогда равен (пользуясь обычным гауссовым доказательством) ∇· J dV . Этот поток приводил бы к уменьшению числа нейтронов в ΔV, если нейтроны не генерируются внутри ΔV (с помощью какой-нибудь ядерной реакции). Если в объеме присутствуют источники, производящие S нейтронов в единицу времени в единице объема, то результирующий поток из ΔV будет равен [ S -(∂ N /∂ t )]ΔV. Тогда получаем

1221 Комбинируя 1221 и 1220 получаем уравнение диффузии нейтронов - фото 652(12.21)

Комбинируя (12.21) и (12.20), получаем уравнение диффузии нейтронов

1222 В статическом случае когда N t 0 мы снова имеем уравнение - фото 653(12.22)

В статическом случае, когда ∂ N /∂ t =0, мы снова имеем уравнение (12.4)! Мы можем воспользоваться нашими знаниями в электростатике для решения задач по диффузии нейтронов. Давайте же решим какую-нибудь задачу. (Пожалуй, вы недоумеваете: зачем решать новую задачу, если мы уже решили все задачи в электростатике? На этот раз мы можем решить быстрее именно потому, что электростатические задачи действительно уже решены !)

Пусть имеется блок материала, в котором нейтроны (скажем, за счет деления урана) рождаются равномерно в сферической области радиусом а (фиг. 12.7).

Фиг 127 Нейтроны рождаются однородно внутри сферы радиуса а в большом - фото 654

Фиг. 12.7. Нейтроны рождаются однородно внутри сферы радиуса а в большом графитовом блоке и диффундируют наружу. Плотность нейтронов N получена как функция r, расстояния от центра источника. Справа показана электростатическая аналогия: однородно заряженная сфера, причем N соответствует φ, а J соответствует Е.

Мы хотели бы узнать, чему равна плотность нейтронов повсюду? Насколько однородна плотность нейтронов в области, где они рождаются? Чему равно отношение нейтронной плотности в центре к нейтронной плотности на поверхности области рождения? Ответы найти легко. Плотность нейтронов в источнике S 0стоит вместо плотности зарядов ρ, поэтому наша задача такая же, как задача об однородно заряженной сфере. Найти N —все равно, что найти потенциал φ. Мы уже нашли поля внутри и вне однородно заряженной сферы; для получения потенциала мы можем их проинтегрировать. Вне сферы потенциал равен Q/4πε 0r, где полный заряд Q дается отношением 4πа 3ρ/3. Следовательно,

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 2. Электромагнетизм и материя отзывы


Отзывы читателей о книге Том 2. Электромагнетизм и материя, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x