Ричард Фейнман - Том 3. Квантовая механика
- Название:Том 3. Квантовая механика
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - Том 3. Квантовая механика краткое содержание
Том 3. Квантовая механика - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Можно было бы подумать, что за аргоном новые электроны начнут заполнять состояние 3 d . Но нет! Как мы уже говорили (и иллюстрировали фиг. 17.7), состояния с высшими моментами сдвинуты по энергии вверх. К моменту, когда мы подошли к 3 d -состояниям, они по энергии оказываются задвинутыми немножко выше энергии 4 s -состояния. Поэтому в калии последний электрон попадет в 4 s -состояние. После этого в кальции оболочка заполнится (двумя электронами), а 3 d -состояния начнут заполняться у скандия, титана и ванадия.
Энергии 3 р - и 4 s -состояний так близки друг к другу, что малозаметные эффекты легко сдвигают равновесие в ту или иную сторону. К моменту, когда придет время поместить в З d -состояния четыре электрона, их отталкивание так подымет энергию 4 s -состояния, что она станет чуть выше энергии З d -состояния, поэтому один электрон из s уходит в d . И для хрома не получается ожидавшаяся комбинация 4, 2, а вместо этого выступает комбинация 5, 1. Новый электрон, добавляемый, чтобы получить марганец, опять заполняет оболочку 4s и затем одно за другим идет заполнение З d -оболочки, пока мы не доберемся до меди.
Но так как самая внешняя оболочка марганца, железа, кобальта и никеля имеет одну и ту же конфигурацию, то все они обладают близкими химическими свойствами. (Этот эффект еще сильнее выражен у редкоземельных элементов. У них внешняя оболочка одинакова, а заполняется постепенно внутренняя ячейка, что меньше сказывается на их химических свойствах.) То же и в меди. В ней тоже построение З d -оболочки завершается грабежом: из 4 s -оболочки уводится один электрон. Энергия комбинации 10, 1, однако, настолько близка у меди к энергии комбинации 9, 2, что равновесие может сместиться уже оттого, что поблизости стоит другой атом. По этой причине два последних электрона меди примерно равноценны, и валентность меди равна то 1, то 2. (Временами она проявляет себя так, как если бы ее электроны были в комбинации 9, 2.) Похожие вещи случаются и в других местах таблицы; они-то и ответственны за то, что другие металлы, такие, как железо, соединяются химически то с той, то с другой валентностью. Наконец, у цинка обе оболочки 3 d и 4s заполняются раз и навсегда.
От галлия до криптона последовательность опять продолжается нормально, заполняя 4 p -оболочку. Внешние оболочки, энергии и химические свойства повторяют картину изменений на участке от бора до неона и от алюминия до аргона.
Криптон, как и аргон или неон, известен как «благородный» газ. Все эти три «благородных» газа химически «инертны» [82] В действительности мнение об инертности благородных газов оказалось, как и многое другое, сильным преувеличением. Криптон, например, весьма охотно соединяется с фтором, образуя кристаллы KrF 6 . Сейчас химия инертных газов превращается в большую и увлекательную науку.— Прим. ред.
. Это означает только то, что после того, как они заполнили оболочки со сравнительно низкими энергиями, редки будут случаи, когда им станет энергетически выгодно соединиться в простые сочетания с другими элементами. Но для «благородства» недостаточно просто обладать заполненной оболочкой. У бериллия, например, или у магния заполнены s-оболочки, но энергия этих оболочек чересчур высока, чтобы можно было говорить об устойчивости. Точно так же можно было бы ожидать появления другого «благородного» элемента где-то возле никеля, если бы энергия у 3 d -оболочки была бы чуть пониже (или у 4 s -оболочки повыше). С другой стороны, криптон не вполне инертен; он образует с хлором слабо связанное соединение.
Поскольку в рассмотренной нами части таблицы уже проявились все основные черты периодической системы, мы обрываем наше изложение на элементе № 36 (их остается еще штук 70, а то и больше!).
Мы хотим отметить еще один момент: мы в состоянии понять в какой-то степени не только валентности, но можем кое-что сказать и о направлениях химических связей. Возьмем такой атом, как кислород. В нем четыре 2 р -электрона. Первые три попадают в состояния « x », « у » и « z », а четвертый вынужден заполнить одно из них, оставив два других — скажем, « x » и « у » — вакантными. Посмотрите теперь, что происходит в Н 2O. Каждый из двух водородов желает разделить свой электрон с кислородом, помогая кислороду заполнить оболочку. Эти электроны будут стремиться попасть на вакансии в состояниях « x » и « y ». Поэтому два водорода в молекуле воды обязаны расположиться под прямым углом друг к другу, если смотреть из центра атома кислорода. На самом деле угол равен 105°. Можно даже понять, почему угол больше 90°. Обобществив свои электроны с кислородом, водороды остаются в конце концов с избытком положительного заряда. Электрическое отталкивание «растягивает» волновые функции и разводит угол до 105°. Так же обстоит дело и у H 2S. Но атом серы крупнее, атомы водорода оказываются дальше друг от друга, и угол расходится только до 93°. А селен еще крупнее, поэтому в H 2Se угол уже совсем близок к 90°.
Аналогичные рассуждения позволяют разобраться в геометрии аммиака H 3N. В азоте есть место еще для трех 2 р -электронов, по одному на каждое состояние типа « x », « у » и « z ». Три водорода будут вынуждены подсоединиться под прямыми углами друг к другу. Углы снова окажутся чуть больше 90°, опять-таки из-за электрического отталкивания, но по крайней мере теперь ясно, отчего молекула H 3N не плоская. Углы в фосфине Н 3Р уже ближе к 90°, а в H 3As еще ближе. Мы не зря предположили, что NH 3не плоский, когда говорили о нем как о системе с двумя состояниями. Именно из-за этой объемности аммиака и возможен аммиачный мазер. Вы видите, что сама форма молекулы аммиака тоже следует из квантовой механики.
Уравнение Шредингера явилось одним из величайших триумфов физики. Снабдив нас ключом к механизму, лежащему в основе строения атома, оно объяснило атомные спектры и всю химию, благодаря чему стала понятна физическая природа материи.
Глава 18 ОПЕРАТОРЫ
§ 1. Операции и операторы
Для того чтобы управиться со всем, что мы до сих пор делали в квантовой механике, достаточно было бы обычной алгебры, но мы все же время от времени демонстрировали особые способы записи квантовомеханических величин и уравнений. Мы хотели бы рассказать теперь немного больше о некоторых интересных и полезных способах описания квантовомеханических величин.
К предмету квантовой механики можно подойти разными способами, и во многих книгах прибегают совсем к иному подходу, чем у нас. Когда вы начнете читать другие книжки, то может оказаться, что вам не удастся сразу связать то, что в них говорится, с тем, что делали мы. Хотя в этой главе мы и получим кое-какие новые результаты, она не похожа на другие главы. У нее совсем иная цель: рассказать о других способах выражения тех же самых физических представлений. Зная это, вы легче поймете, о чем говорится в других книжках.
Читать дальшеИнтервал:
Закладка: