Эрик Роджерс - Физика для любознательных. Том 1. Материя. Движение. Сила
- Название:Физика для любознательных. Том 1. Материя. Движение. Сила
- Автор:
- Жанр:
- Издательство:Мир
- Год:1969
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эрик Роджерс - Физика для любознательных. Том 1. Материя. Движение. Сила краткое содержание
Физика для любознательных. Том 1. Материя. Движение. Сила - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
б) знаменатель дроби R был бы занижен на…?…%;
в) вследствие этого окончательный результат ( R = 1530) был бы за…ен?
на…?…%.
В самом худшем случае все результаты измерений, стоящие в числителе, могут быть занижены на величину ошибки, а все результаты измерений, стоящие в знаменателе, — завышены на величину ошибки;
г) в этом случае результат будет за…ен? на…?…%.
На практике мы рассчитываем, что столь коварного заговора против нас не будет. Тем не менее результат, который получается в последнем случае, может служить серьезным предостережением.
Оценка как единственная возможность
Часто бывает необходимо прикинуть ответ, хотя нет данных для точного расчета или нет ни времени, ни возможностей использовать все данные полностью. Например, при сильном снегопаде в большом городе городские власти хотят знать, сколько человек требуется для уборки снега. Неважно, будет ли это 3219 или 3456 человек: вполне достаточно установить, что требуется 3000–4000 человек. Но эту цифру нужно получить быстро: обсуждать и уточнять, требуется ли 3119 человек или на 100 больше или на 50 меньше, не приходится — задержка повлечет большие затраты времени и денег, а может привести и к серьезной опасности.
Однако уборка снега — старая проблема, где подсчет может базироваться на опыте прошлых лет. Иногда возникают новые проблемы, требующие быстрого ответа, хотя даже исходные данные можно оценить лишь ориентировочно. Например, генерал спрашивает полковника, указывая на карту. «Сколько человек может прокормить этот район в течение месяца?» Генерала устраивает незамедлительный, пусть ненадежный ответ: «Около 7000».
Тщательное обследование и точный учет продовольствия и потребностей, включая детальное рассмотрение транспортной проблемы, могли бы дать более достоверный ответ, скажем 9250. Но необходимые данные нельзя получить, пока район не будет занят!
Еще один пример. При пересмотре налогов нужно быстро получить приближенную оценку объема импорта табака. Ошибка даже на 40 % не помешает решению задачи. Детальное изучение вопроса могло бы привести к результату, отличающемуся от истинной цифры всего на 0,1 %. Но оно было бы сопряжено с ненужной тратой средств и не имело бы ничего общего с научным подходом к проблеме. Дело в том, что этот точный результат играет лишь второстепенную роль в общем комплексе вопросов и должен учитываться совместно с другими сведениями, которые не могут быть точными.
На рубежах новых знаний приближенная оценка может оказаться главным и единственным результатом эксперимента. Тем не менее ученые могут быть очень рады такому результату [170].
Например, в раннюю эпоху развития атомной физики эксперименты позволили высказать предположение, что «атомы углерода имеют по 6 электронов». Сегодня мы знаем, что каждый нейтральный атом углерода имеет ровно 4 электрона, ну а 50 лет назад физики были рады узнать, что это число электронов близко к 6, а не к 2 или 20. Они смело приняли число электронов равным 6 и выдвинули теорию строения атомов, которая содействовала дальнейшему развитию атомной физики, направляя экспериментаторов и теоретиков по верному пути. Опытная проверка теории на основе содержащихся в ней положений подтвердила правильность этой теории и окончательно оправдала выбор числа 6 в ретроспективном плане.
Мы встречаем много задач, в которых отыскание точного ответа либо требует затраты неоправданных усилий, либо просто невозможно, но где в то же время можно удовлетвориться приближенным решением. В таких случаях не остается ничего другого, как на основе разумных предположений, требующих смекалки и работы мысли, произвести оценку, или, как говорят, «грубую прикидку».
Оценки, к которым приходится прибегать деловым людям, государственным деятелям, или ученым, — не простое дело: тут нельзя обойтись примитивным угадыванием решения. Оценки требуют не только уменья и навыка, разностороннего опыта и широты знаний, но и твердости характера. Не упускайте возможности проделывать такие расчеты в вашей повседневной работе, будь то нынешние учебные занятия или будущая профессиональная деятельность.
Если вы достигнете успехов в своей деятельности, то вам наверняка придется часто проделывать ориентировочные расчеты — навык в этом деле представляет собой важнейшее качество хорошего администратора. При правильном применении оценочные расчеты с их приближенными ответами играют важную роль в научных исследованиях. В самом деле, они могут даже стать самостоятельной областью знания: мастер в оценочных расчетах должен обладать способностью к широким обобщениям в науке.
Вот два примера:
Пример А . «Сколько времени потребуется, чтобы скосить этот газон?»
Ширина косилки около полметра, ширина ряда (полосы скошенной травы) с учетом частичного перекрытия рядов должна быть самое большее 45 см и самое меньшее 30 см. Газон, насколько можно судить, имеет примерно 30 м в длину и 9 м в ширину. На газоне укладывается от 9/ 0,45до 9/ 0,3, т. е. от 20 до 30 продольных рядов. Остановимся на 30 рядах. Косилка должна пройти 30 рядов, каждый длиной примерно 30 м, т. е. всего ее путь составит 300 м, или 0,9 км. Рабочий, толкающий перед собой косилку, вряд ли идет со скоростью 6 км/час, но вполне может идти со скоростью 3 км/час, в этом случае рабочему потребуется (0,9 км)/(3 км/час), т. е. 3/ 10часа. Наш ответ — 20 минут — представляет собой грубую прикидку, но ее можно использовать для проверки правильности расценок.
Пример Б . «Во сколько раз масса Солнца больше массы Земли?»
Очень интересно получить хотя бы приближенный ответ на этот вопрос. Тогда можно было бы узнать, достаточно ли массивна Земля по сравнению с Солнцем, чтобы вызывать заметное возмущение орбит других планет и комет. Астрономы могут «взвесить» Солнце по отношению к Земле, воспользовавшись законом всемирного тяготения Ньютона. Имеющиеся точные данные дают отношение

Грубое округление с целью быстро получить приближенный ответ дает
Масса Солнца / Масса Земли ~= 200 000/1 или 300 000/1 или 400 000/1
в зависимости от того, как именно производить округление. Это наверняка неправильный, вернее «неточный», ответ по сравнению с точностью исходных данных. Все, что можно на самом деле сказать, это то, что ответ лежит где-то между 100 000 и 500 000.
Но в данном случае этого достаточно: ответ показывает, что масса Земли составляет ничтожную долго массы Солнца, поэтому Земля едва ли в состоянии как-нибудь повлиять на движение других планет, скажем Марса, вокруг Солнца.
Читать дальшеИнтервал:
Закладка: