Эрик Роджерс - Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Тут можно читать онлайн Эрик Роджерс - Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Мир, год 1973. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра
  • Автор:
  • Жанр:
  • Издательство:
    Мир
  • Год:
    1973
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Эрик Роджерс - Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра краткое содержание

Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - описание и краткое содержание, автор Эрик Роджерс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.

Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - читать онлайн бесплатно полную версию (весь текст целиком)

Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - читать книгу онлайн бесплатно, автор Эрик Роджерс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Электроны, испускаемые накаленным катодом, образуют облако в области между катодом и сеткой. Электроны, которым удается пройти сквозь ячейки сетки, движутся под действием сильного поля к аноду. Разность потенциалов между сеткой и катодом управляет потоком электронов.

Фиг 112 Характеристика триода Напряжение анода поддерживается при снятии - фото 100

Фиг. 112. «Характеристика» триода.

Напряжение анода поддерживается при снятии этой «характеристики» постоянным.

Триоды в радиоприемниках

В усилителе радиоприемника приходящие радиосигналы создают малые напряжения между катодом и сеткой триода [60]. Возникающие в результате этого изменения потока электронов, направляющихся к аноду, вызывают большие изменения напряжения между концами так называемого «сопротивления нагрузки», включенного в анодную цепь, с которого «снимают» эти изменения напряжения. Напряжение на сопротивлении нагрузки можно приложить между сеткой и катодом еще одного триода для дальнейшего усиления и в конечном счете заставить работать от этого напряжения динамик.

Чтобы динамик приемника мог работать от радиосигналов, их нужно не только усилить, но и выпрямить — пропустить через какое-то устройство, дающее на выходе ток одного направления. Необходимость выпрямления радиосигналов не очевидна; почему их приходится выпрямлять, будет рассказано в гл. 41 .

Триод может работать как выпрямитель у нижнего излома своей характеристики — графика зависимости тока от напряжения, где характеристика загибается, приближаясь к горизонтальной оси. Однако, несмотря на возможность использовать одну и ту же лампу как для выпрямления, так и для усиления, лучше разделить обе эти задачи и применять разные лампы.

Триоды сочетают усилительные свойства с достоинствами диодов. Диоды находят применение в «источниках питания» для получения постоянного тока из переменного; эти источники используются вместо батарей. Обеим лампам угрожает конкуренция со стороны новых приборов — маленьких «транзисторов», в которых нет накаливаемых элементов. В транзисторе в кусочке полупроводникового кристалла создается однонаправленное управляемое противодействие движению электронов на стыках полупроводниковых материалов двух типов в одном и том же кристалле.

Фиг 113 Усиление радиосигналов а усиление на одном триоде б две ступени - фото 101

Фиг. 113. Усиление радиосигналов.

а— усиление на одном триоде; б— две ступени усиления.

Электронная пушка

Тут вы оказываетесь похожим на человека, который всю жизнь говорил прозой, сам того не зная. Вы, должно быть, имели дело с электронной пушкой, не зная об этом. Электроны, испаряющиеся из накаленного катода, ускоряются под действием электрического поля и бомбардируют анод. Если в аноде проделать отверстия, то через каждое отверстие будет выбрасываться поток электронов. Электроны продолжают свой путь, пока не ударятся о стенки баллона или, если в лампе есть остатки газа, пока не потеряют энергию при столкновениях с молекулами газа. Если электроны обладают достаточно большой энергией, то они могут пройти даже сквозь тонкие стеклянные или металлические стенки баллона и вылететь в атмосферу, где вскоре тормозятся.

Электронная пушка, предназначенная для получения узкого пучка электронов, обладает некоторыми дополнительными особенностями устройства. Анод имеет лишь одно отверстие, добавлены сетки для управления фокусировкой и интенсивностью пучка. Благодаря фокусировке электроны выходят очень узким пучком или собираются в маленькое пятнышко к моменту достижения мишени, если пучок при выходе расходящийся. Чтобы добиться этого, создают небольшие дополнительные электрические поля. Проблемы, связанные с получением полей нужной конфигурации, составляют новую область техники — «электронную оптику», в которой пользуются плодотворной аналогией между классической оптикой и механикой электронов.

Интенсивностью пучка электронов управляют посредством отрицательно заряженной сетки, которая расположена вблизи нити накала и создает поле, тормозящее поток электронов. Сетка таким образом управляет числом электронов, которые достигают ускоряющего поля. Если сетка находится под большим отрицательным потенциалом, она отталкивает все электроны обратно к нити накала. Если сетка слегка отрицательна по отношению к катоду, то она позволяет осуществить эффективное управление потоком электронов. При положительной сетке плотность потока максимальна, и пушкой уже нельзя управлять. На схемах мы будем изображать такие электронные пушки без дополнительных сеток или анодов.

В ранний период изучения электронов, на пороге 1900 г., таких обильных источников потока электронов не было. Вместо них Дж. Дж. Томсону и другим исследователям пришлось пользоваться электронами, которые были вырваны из металлов или выбиты из молекул разреженного газа в разрядных трубках, а затем ускорены в трубке под действием разности потенциалов в несколько тысяч вольт. Это давало слабый пучок электронов с неодинаковой кинетической энергией.

Фиг 114 Электронные пушки а трубка в которой создан вакуум б трубка с - фото 102

Фиг. 114. Электронные пушки.

а— трубка, в которой создан вакуум; б— трубка с небольшим количеством газа; в— трубка, в которой создан вакуум; электроны выходят наружу через очень тол кое металлическое окно в торце трубки.

Осциллографы

Пучок электронов, вылетающих из электронной пушки, если его путь проходит через вакуум и он не встречает больше электрических полей, имеет вид прямой линии, а скорость электронов не меняется. Налетая на торцевую стенку стеклянного баллона, электроны останавливаются, их кинетическая энергия переходит в тепло, за исключением тех редких случаев, когда вместо этого при торможении электрона испускается фотон (квант) рентгеновского излучения. Если покрыть стекло слоем специального флуоресцирующего состава, то в том месте, куда ударяются электроны, появится светящееся пятно. Налетающие электроны вызывают свечение не в результате нагрева, а благодаря возбуждению электронов в атомах покрытия. Этим светящимся пятном можно чертить графики и рисовать изображения. Электрические поля отклоняют пучок справа налево и слева направо в горизонтальном направлении или вверх и вниз, заставляя его вычерчивать графики или рисовать изображения на телевизионном экране. Электроны в пучке движутся очень быстро и обладают ничтожно малой массой, поэтому пучок невероятно быстро и легко реагирует на действие отклоняющих полей.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эрик Роджерс читать все книги автора по порядку

Эрик Роджерс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра отзывы


Отзывы читателей о книге Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра, автор: Эрик Роджерс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x