Эрик Роджерс - Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра
- Название:Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра
- Автор:
- Жанр:
- Издательство:Мир
- Год:1973
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эрик Роджерс - Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра краткое содержание
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
На фиг. 115 показана трубка электронно-лучевого осциллографа — предшественница телевизионных трубок.

Фиг. 115. Трубка электронно-лучевого осциллографа.
Электроны вылетают узким пучком из пушки G и налетают на экран S , расположенный на противоположном конце трубки. Экран S покрыт слоем вещества, которое светится при бомбардировке электронами. Пучок фокусируется пушкой в маленькое светящееся пятно на экране. Проходя через отклоняющее электрическое поле, созданное между пластинами Р 1и Р ' 1, пучок смещается вверх или вниз, так как электроны получают некоторое количество движения в вертикальном направлении. Имеется еще одна пара пластин, Р 2и Р ' 2, между которыми создают поле для отклонения пучка в горизонтальной плоскости. Если к пластинам Р 1и Р ' 1подключить батарею (с э.д.с. скажем, 45 в) так, чтобы верхняя пластина стала положительной, то пучок отклонится вверх, и пятно будет находиться в определенном положении в верхней части экрана S , пока подсоединена батарея [61]. Если к пластинам Р 1и Р ' 1 подвести переменное напряжение, то пятно будет перемещаться вверх и вниз, практически мгновенно следуя за изменениями напряжения. Чтобы вычертить графическую картину изменения вертикального отклонения во времени, горизонтальное электрическое поле должно перемещать пучок с постоянной скоростью по экрану трубки в горизонтальной плоскости. Схема такой «развертки» рассмотрена в задаче 11 гл. 36 . Вам следовало бы поработать с трубкой в лаборатории ( опыт 10 гл. 41 ).
В телевизионной трубке пятно должно совершать периодическое перемещение вверх и вниз и справа налево, быстро покрывая всю площадь кадра. Одновременно с этим перемещением пятна по экрану его яркость должна изменяться под действием приходящих радиоволн, благодаря этому получаются светлые и темные части изображения.

Фиг. 116. Схема с простой электронно-лучевой трубкой для вычерчивания графической картины изменения тока во времени.
Разность потенциалов на сопротивлении, пропорциональная току в цепи, прикладывается к пластинам трубки и создает вертикальное отклоняющее электрическое поле. «Переключающая лампа» в цепи развертки представляет собой специальную газонаполненную радиолампу, подобную неоновой газосветной лампе. При низком напряжении эта лампа не проводит тока. Когда напряжение на ней достигает определенной величины, лампа внезапно вспыхивает, и через нее проходит ток (благодаря образованию ионов при столкновениях). Ток, проходящий через высокое сопротивление, заряжает конденсатор. Когда конденсатор зарядится до определенного напряжения, лампа вспыхивает, давая возможность конденсатору быстро разрядиться до нулевого напряжения. Таким путем получают пилообразное напряжение, необходимое для развертки.
Задача 12
Предположим, вы располагаете электронной пушкой типовой конструкции и вас попросили спроектировать телевизионную трубку. Как бы вы предложили осуществить изменение яркости пятна? (Существует несколько схем, некоторые из них можно использовать не только в телевизионной трубке.)
Указание . Электроны, которые ударяются об экран, должны обладать максимальной скоростью пучка, иначе они вообще не смогут возбудить свечение.
В современных телевизионных трубках отклонение электронного пучка осуществляется не электрическими, а магнитными полями. Вскоре вы увидите, что их можно использовать вместо электрических полей.
Энергия электрического поля. Волны
[Оставшаяся часть этой главы описывает необыкновенные явления, находящие полное объяснение и подтверждение при более серьезном изучении, чем то, которое предлагается здесь. Тем не менее она проливает некоторый свет на понятие электрической энергии и дает представление об электромагнитных волнах.]
Движущиеся заряды переносят с собой создаваемые ими поля, силовые линии поля движутся вместе с зарядами, подобно тому, как пышные усы — вместе с их обладателем. Во всем пространстве вокруг проводов электрической цепи, по которым течет ток, должны перемещаться силовые линии [62]. Именно эти движущиеся силовые линии переносят электрическую энергию от батареи к различным частям цепи через разделяющее их пространство. Силовые линии натягиваются и тянут заряды, поддерживая ток, и передают энергию своей упругой деформации, почти как движущийся приводной ремень.
Это движение сопровождается новым эффектом: появлением магнитного поля, у которого также есть силовые линии (силовые линии совсем иного рода, хотя и с похожей конфигурацией). Магнитное поле, связанное с протеканием тока по цепи, обладает, оказывается, собственным запасом энергии, количество которой пропорционально величине ( сила тока ) 2. Сходство с кинетической энергией, которая пропорциональна величине ( скорость ) 2, наводит на мысль, что энергию магнитного поля можно рассматривать как кинетическую энергию цепи, связанную, возможно, с кинетической энергией движения электронов. Эта «кинетическая энергия» магнитного поля тока дает основание считать, что оно обладает чем-то подобным массе. А потенциальная энергия, присущая электрическим полям, позволяет провести аналогию между их поведением и поведением пружины или растягиваемого шнура. В действительности между обоими видами поля существует взаимосвязь. Вместе взятые они образуют электромагнитное поле, обладающее как «пружинистостью», так и инертностью, или массой. Мы знаем, что в любой среде, которая характеризуется упругостью и массой, могут распространяться волны: вдоль натянутой веревки, вдоль массивной витой пружины, в воздухе — в виде звуковых волн. Таким образом, мы можем высказать смелую догадку и предположить, что в электромагнитном поле могут распространяться волны. И действительно, можно заставить электрическую цепь посылать волны, если быстро изменять текущий по ней ток. Это те самые радиоволны, существование которых столетие назад предсказал Максвелл. Вывод Максвелла представлял собой не просто догадку, а был основан на его математической формулировке законов электрического и магнитного полей.
Электромагнитные волны
В тех случаях, когда ток в цепи быстро меняется и заряды не просто движутся, но движутся с ускорением и замедлением, должны происходить изменения полей. Эти изменения, как мы теперь знаем, распространяются не мгновенно — информация о них достигает удаленных от цепи областей пространства лишь некоторое время спустя. Чтобы понять, как это происходит, рассмотрим цепь с разрывом, наподобие той, о которой говорилось в начале этой главы (фиг. 51). Подключим цепь сначала к батарее, а потом к источнику переменного напряжения. На фиг. 117 показана такая цепь, причем в разрыв включен конденсатор, т. е. две пластины, параллельные друг другу и разделенные воздушным промежутком. Под действием переменного напряжения заряды движутся то к пластинам конденсатора, то от пластин. В этом смысле говорят, что конденсатор проводит переменный ток.
Читать дальшеИнтервал:
Закладка: