Марк Волынский - Необыкновенная жизнь обыкновенной капли
- Название:Необыкновенная жизнь обыкновенной капли
- Автор:
- Жанр:
- Издательство:Издательство «Знание»
- Год:1986
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Марк Волынский - Необыкновенная жизнь обыкновенной капли краткое содержание
Необыкновенная жизнь обыкновенной капли - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
И вот следующий долгожданный день наступил. Сначала я повторил один к одному прежний эксперимент. Эффект раздвоения капли за ночь не изменил своей природы. Потом я слегка уменьшил скорость воздушного потока — отпечаток снова стал одиночным. Так я нащупал границу: чуть уменьшишь скорость — один отпечаток, увеличишь — два. «Прочь, сомнения и тревоги!» Я случайно наткнулся на новое явление — дробление капли в потоке воздуха при определенной критической скорости.
Я круто изменил направление исследований. К черту нудные работы с поправочным коэффициентом отпечатка! (Благо, они почти закончены.) Распад капли в потоке гораздо принципиальней и интересней. Теперь нужны убедительные подтверждения. Ведь мы все-таки не видели своими глазами, как она дробится. Доказательства требуются четкие и наглядные, тогда можно избежать неприятных разговоров с начальством о новой , внеплановой теме — победителей не судят. Я начал с химии: в лаборатории реактивов изготовили стопку фильтровальной бумаги со специальной пропиткой. В жидкость — теперь мы перешли на воду — была добавлена специальная примесь красителя, практически не менявшая физических констант воды. Капля, попавшая на экран, моментально впитывалась — отскакивание исключалось. На бумаге возникало «глазастое» яркое пятно, оно хорошо было видно невооруженным глазом и для очень мелких капель.
Таким «победным флагом» можно было помахать перед глазами членов научно-технического совета. Но все-таки хотелось увидеть, зафиксировать сам процесс дробления. Конечно, здесь годился прибор, который тогда назывался «лупа времени» или попросту «скоростное кино». Но его надо было искать в другом институте. К тому же прибор нуждался в тонкой наводке и фокусировке. А куда наводить эту оптическую «тяжелую артиллерию», если точка дробления неизвестна и наверняка «гуляет» в пространстве и времени? Совместно с оптиками мы придумали более простой метод. Летящая капля фотографировалась в затемненной комнате при боковом освещении (рис. 16). Объектив фотоаппарата оставался открытым; свет, отраженный поверхностью ртутных капель (или преломленный каплями воды), попадал в объектив и прочерчивал на пленке всю траекторию, ясно обозначая место раздвоения. Труд, вложенный в методику, всегда окупается сторицей. Опыты показали четкий результат. Для каждой жидкости имеется своя критическая скорость, она тем больше, чем мельче капля; критическая скорость растет с ростом поверхностного натяжения жидкости и с уменьшением плотности газа.
Эксперименты прошли быстро, на одном дыхании. Были получены новые интересные факты, теперь предстояло осмыслить их, свести воедино многочисленные столбцы разрозненных цифр в протоколах опытов. Каков закон дробления? Я попробовал рассуждать просто. . При полете капли противоборствуют две силы: активная — аэродинамическая — стремится деформировать каплю; стабилизирующая, обусловленная поверхностным натяжением, сопротивляется — эластичная жидкая поверхность изгибается, но не рвется.
Рис. 16. Схема экспериментов по дроблению капель в газовом потоке: 1 — выходное отверстие воздуходувки, 2 — капельница, 3 — осветитель, 4 — точка раздвоения капли, 5 — фотоаппарат, 6 — улавливающий экран
О чем говорит факт существования критической скорости? О некой критической стадии деформации. Если отклонение от шара невелико, форма (как и сферическая) еще устойчива относительно малых возмущений, деформация обратима; потом на излете капля стянется в шарик. Но если дело зашло далеко, достигнут критический предел — возврата нет, малые возмущения (как и на струе) довершат дело, развалят каплю. Дойдет до критической деформации или нет, это вопрос «кто — кого» в противоборстве сил.
Движущаяся капля всегда немного вибрирует. Вдали от критической фазы эти малые колебания для нее безопасны. На критической грани капля «дышит тяжело», как бы раздумывая — развалиться или нет, и где- то на «выходе» перетягивается восьмеркой пополам.
Теперь от качественных соображений предстояло переходить к числам, памятуя, что качество — непознанное количество. Легко сказать: к числам. От них пестрит в глазах.
Таб.1
В каждом опыте (а он «схватка в воздухе») капля имеет свою «визитную», или, может, лучше — «летную» карточку. Там о ней все записано: диаметр капли, поверхностное натяжение жидкости, скорость и плотность обдувающего газа. Целых четыре числа — умножьте на сотни опытов... необозримое поле. А что, если «роковой вопрос» жизни капли выразить на количественном языке соотношения противоборствующих сил: активной — давления потока и демпфирующей — давления поверхностного натяжения (они как раз зависят от четырех наших чисел). Возьмем давление газа P r в лобовой точке капли, где оно наибольшее и равно скоростному напору ρ u 2/2(струйка тока газа полностью тормозится). Давление поверхностного натяжения определим по известной формуле Лапласа для жидкого шара Р ж = 4σ/а. Величина отношения давлений (с точностью до постоянных коэффициентов) дает комплекс, называемый критерием, или числом Вебера We:
Рг/Рж ≈ We = ρ u 2а/σ.
Теперь четыре числа заменялись одним. Путь экономии информации обычно плодотворен. Он и привел меня к искомому закону. Стоило разложить «летные» карточки моих капель по порядку новых номеров, как обнаружилась интересная закономерность.
Пусть взяты самые разные четверки исходных чисел для совсем непохожих жидкостей: воды, ртути, спирта, керосина. Если их новый «паспортный номер» одинаков, одинакова и судьба капель. Когда число Вебера меньше десяти, капля остается целой; если оно равно десяти, происходит раздвоение; при числе чуть больше десяти (11—12 — деликатная область, верхнюю границу найти трудно) — распад на несколько крупных (три, четыре, пять...) примерно равных частей. Дальше, если число достигает 14, переход в мир иной, от порядка к хаосу — режим распыливания: капли, возникшие в результате распада, на порядок меньше исходной капли и составляют статистический спектр; с ростом числа Вебера за 14 (закритическая область) капельные осколки все измельчаются. Различные формы деформации и распада капли в зависимости от числа Вебера приведены в таблице (Таб.1).
Читать дальшеИнтервал:
Закладка: