Ричард Фейнман - 8a. Квантовая механика I
- Название:8a. Квантовая механика I
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 8a. Квантовая механика I краткое содержание
8a. Квантовая механика I - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Вдобавок a 1и а 2должны быть нормированы так, чтобы было | a | 2+| а 2| 2=1. Величины Н 11и H 12мы можем взять из (8.22), используя равенства
B z =Bcosq, В х =В sinqcosj, В у =В sinqsinj.
Тогда мы имеем
Кстати, скобка во втором уравнении есть просто , так что проще писать
Подставляя эти матричные элементы в (8.24) и сокращая на -m B, находим
Зная это отношение и зная условие нормировки, можно найти и а 1 , и а 2. Сделать это нетрудно, но мы сократим путь, прибегнув к одному трюку. Известно, что
1-cosq=2sin 2(q/2) и sinq=2sin(q/2)cos(q/2). Значит, (8.27) совпадает с
Один из ответов, следовательно, таков:
Он удовлетворяет и уравнению (8.28), и условию
Вы знаете, что умножение a 1и а 2на произвольный фазовый множитель ничего не меняет. Обычно формуле (8.29) предпочитают более симметричную запись, умножая на e'f' 2. Принято писать так:
Это и есть ответ на наш вопрос. Числа а 1и а 2— это амплитуды того, что электрон будет замечен спином вверх или вниз (по отношению к оси z), если известно, что его спин направлен вдоль оси (q,j). [Амплитуды C 1и С 2равны просто a 1и a 2, умноженным на
Заметьте теперь занятную вещь. Напряженность В магнитного поля нигде в (8.30) не появляется. Тот же результат разумеется, получится в пределе, если поле В устремить к нулю Это означает, что мы дали общий ответ на вопрос, как представлять частицу, спин которой направлен вдоль произвольной оси. Амплитуды (8.30) — это проекционные амплитуды для частиц со спином 1/ 2, подобные проекционным амплитудам для частиц со спином 1, приведенным в гл. 3 [уравнения (3.38)]. Теперь мы сможем находить для фильтрованных пучков частиц со спином 1/ 2амплитуды проникновения через тот или иной фильтр Штерна — Герлаха.
Пусть |+z> представляет состояние со спином, направленным по оси z вверх, а |-z> — состояние со спином вниз. Если | +z'> представляет состояние со спином, направленным вверх по оси z', образующей с осью z углы q и j, то в обозначениях гл. 3 мы имеем
Эти результаты эквивалентны тому, что мы нашли из чисто геометрических соображений в гл. 4 [уравнение (4.36)]. (Если вы в свое время решили пропустить гл. 4, то вот перед вами один из ее существенных результатов.)
Напоследок вернемся еще раз к тому примеру, о котором уже не раз говорилось. Рассмотрим такую задачу. Сперва имеется электрон с определенным образом направленным спином, затем на 25 минут включается магнитное поле в направлении z, а затем выключается. Каким окажется конечное состояние? Опять представим состояние в виде линейной комбинации |y>=| 1 > C 1+| 2 > С 2 , Но в нашей задаче состояния с определенной энергией являются одновременно нашими базисными состояниями | 1 > и | 2>, Значит, С 1и С 2меняются только по фазе. Мы знаем, что
и
Мы сказали, что вначале у спина электрона было определенное направление. Это означает, что вначале С 1и С 2были двумя числами, определяемыми формулами (8.30). Переждав Т секунд, новые С 1и С 2мы получим из прежних умножением соответственно на и
. Что это будут за состояния? Узнать это легко, ведь это все равно, что изменить угол j, вычтя из него 2mB z T/h, и не трогать угол q.
Это значит, что к концу интервала времени Т состояние |y> будет представлять электрон, выстроенный в направлении, отличающемся от первоначального только поворотом вокруг оси z на угол Dj =2mB z T/h. Раз этот угол пропорционален Т, то можно говорить, что направление спина прецессирует вокруг оси z с угловой скоростью 2mB z /h. Этот результат мы уже получали раньше несколько раз, но не так полно и строго. Теперь мы получили полное и точное квантовомеханическое описание прецессии атомных магнитов.
Любопытно, что математические идеи, которые мы только что применили к электрону, вращающемуся в магнитном поле, применимы и для любой системы с двумя состояниями. Это означает, что, проведя математическую аналогию с вращающимся электроном, можно при помощи чисто геометрических рассуждений решить любую задачу для двухуровневой системы. Сперва вы сдвигаете энергию так, чтобы ( H 11+ H 22) было равно нулю (так что H 11 =-H 22). И тогда любая задача о такой системе формально совпадет с задачей об электроне в магнитном поле. Вам нужно будет только отождествить —mB z с H 11, а -m (В х -iB y ) с H 12 . И неважно, какая физика там была первоначально — молекула ли аммиака или что другое,— вы можете перевести ее на язык соответствующей задачи об электроне. Стало быть, если мы в состоянии решить в общем случае задачу об электроне, мы уже решили все задачи о двух состояниях.
А общее решение для электронов у нас есть! Пусть вначале электрон обладает определенным состоянием, в котором спин направлен вверх по некоторому направлению, а магнитное поле В — в какую-то другую сторону. Вращайте просто направление спина вокруг оси В с векторной угловой скоростью w( t ) , равной некоторой константе, умноженной на вектор В (а именно w=2m В/h). Если В меняется со временем, двигайте по-прежнему ось вращения так, чтобы она оставалась параллельной В, и изменяйте скорость вращения так, чтобы она все время была пропорциональна напряженности В (фиг. 8.11).
Читать дальшеИнтервал:
Закладка: