Ричард Фейнман - 8a. Квантовая механика I

Тут можно читать онлайн Ричард Фейнман - 8a. Квантовая механика I - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    8a. Квантовая механика I
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.9/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 8a. Квантовая механика I краткое содержание

8a. Квантовая механика I - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

8a. Квантовая механика I - читать онлайн бесплатно полную версию (весь текст целиком)

8a. Квантовая механика I - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Далее, матричные элементы H ij это тоже амплитуды, которые можно записывать в виде < i | H | j >; наше дифференциальное уравнение выглядит тогда так:

Мы видим что ih это амплитуда того что в физических условиях - фото 189

Мы видим, что —i/h <1| H | j > — это амплитуда того, что в физических условиях, описываемых матрицей Н, состояние | j > за время dt «генерирует» состояние | i >. (Все это неявно подразумевалось в рассуждениях гл. 6, § 4.)

Теперь, следуя идеям гл. 6, § 2, мы можем сократить в (9.17) общий «множитель» < i |, поскольку (9.17) справедливо при любом | i >, и записать это уравнение просто в виде

Или сделав еще один шаг убрать к тому же и j и написать В гл 6 мы - фото 190

Или, сделав еще один шаг, убрать к тому же и j и написать

В гл 6 мы указывали что при такой записи Н в Н j или в Н y называется - фото 191

В гл. 6 мы указывали, что при такой записи Н в Н | j > или в Н |y> называется оператором. Отныне на операторы мы бу­дем надевать маленькие шапочки (^), чтобы напоминать вам, что это оператор, а не число. Мы будем писать картинка 192

. Хотя оба уравнения (9.18) и (9.19) означают в точности то же самое, что и (9.15) или (9.17), мы можем думать о них совершенно иначе. Например, уравнение, (9.18) можно было бы описывать так: «Производная по времени от вектора состояния |y> рав­няется тому, что получается от действия оператора Гамильтона Н на каждое базисное состояние, умноженному на амплитуду < j |y> того, что y окажется в состоянии j, и просуммирован­ному по всем j ». Или уравнение (9.19) можно описать так: «Производная по времени (умноженная на ih) от состояния |y> равняется тому, что вы получите, если подействуете гамильто­нианом Н на вектор состояния |y>». Это просто сокращенный способ выражения того, что содержится в (9.17), но, как вы потом убедитесь, он может оказаться очень удобным.

Если хотите, идею «абстрагирования» можно продвинуть еще на шаг. Уравнение (9.19) справедливо для всякого состоя­ния |y>. Кроме того, левая сторона ihd/dt — это тоже опера­тор; его действие: «продифференцируй по t и умножь на ih». Итак, (9.19) можно рассматривать как уравнение между опера­торами — операторное уравнение

Ih(d/dt)= картинка 193

Оператор Гамильтона (с точностью до константы), действуя на любое состояние, приводит к тому же результату, что и d/dt. Помните, что это уравнение, как и (9.19), не есть утверждение о том, что оператор картинка 194просто та же операция, что и d/dt. Эти уравнения — динамический закон природы (закон движения) для квантовой системы.

Только для того, чтобы попрактиковаться в этих представ­лениях, продемонстрируем вам другой вывод уравнения (9.18). Вы знаете, что любое состояние |y> можно записать через его проекции на какой-то базис [см. (6.8)]:

Как же меняется y во времени Продифференцируем его Но базисные - фото 195

Как же меняется |y> во времени? Продифференцируем его:

Но базисные состояния i во времени неменяются по крайней мере у нас они - фото 196

Но базисные состояния | i > во времени неменяются (по край­ней мере у нас они всегда были определенными, закрепленными состояниями), и только амплитуды < i |y>—это числа, которые могут меняться. Иначе говоря, (9.21) прекращается в

Но ведь d i ydt нам известноэто 916 получается следовательно - фото 197

Но ведь d < i |y>/dt нам известно—это (9.16); получается, сле­довательно,

А это опятьтаки уравнение 918 Итак на гамильтониан можно смотреть - фото 198

А это опять-таки уравнение (9.18).

Итак, на гамильтониан можно смотреть по-разному. Можно рассматривать совокупность коэффициентов H ij просто как компанию чисел, можно говорить об «амплитудах» < i | Н |j>, можно представлять себе «матрицу» H ij и можно считать его

«оператором» H^ . Все это одно и то же.

Вернемся теперь к нашей системе с двумя состояниями. Если уж мы записываем гамильтониан через матрицы сигма (с подходящими численными множителями, такими, как В х и т. д.), то естественно рассматривать и s x ijкак амплитуду < i |s х | j >, или, для краткости, как оператор s^ л. Если приме­нить эту идею оператора, то уравнение движения состояния |y> в магнитном поле можно написать в виде

Желая использовать это уравнение нам естественно приходится выражать y - фото 199

Желая «использовать» это уравнение, нам, естественно, прихо­дится выражать |y> через базисные векторы (равносильно тому, что приходится находить компоненты пространственных векторов, когда задача доводится до числа). Так что обычно мы предпочитаем расписывать (9.23) в более раскрытом виде:

Сейчас вы увидите чем красива идея оператора Чтобы применять уравнение - фото 200

Сейчас вы увидите, чем красива идея оператора. Чтобы при­менять уравнение (9.24), нужно знать, что будет, когда опера­торы о подействуют на каждое базисное состояние. На­пишем s^ z |+>; это какой-то вектор |?>, но какой? Что ж, умножим его слева на <+| и получим

пользуясь табл 91 Итак мы знаем что 1 925 Теперь умножим s - фото 201

(пользуясь табл. 9.1). Итак, мы знаем, что

<+|?>=1. (9.25)

Теперь умножим s^ z|+> слева на <-|. Получится

т е Существует только один вектор состояния удовлетворяющий и 925 - фото 202

т, е.

Существует только один вектор состояния удовлетворяющий и 925 и 926 - фото 203

Существует только один вектор состояния, удовлетворяющий и (9.25), и (9.26); это |+>. Мы, стало быть, открыли, что

Такого рода рассуждениями можно легко показать что все свойства матриц сигма - фото 204

Такого рода рассуждениями можно легко показать, что все свойства матриц сигма могут быть в операторных обозначениях описаны рядом правил, приведенных в табл. 9.3.

Таблица 9.3 · СВОЙСТВА ОПЕРАТОРА s^

Если у нас есть произведения матриц сигма то они переходят в произведения - фото 205

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




8a. Квантовая механика I отзывы


Отзывы читателей о книге 8a. Квантовая механика I, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x