Ричард Фейнман - 8a. Квантовая механика I
- Название:8a. Квантовая механика I
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 8a. Квантовая механика I краткое содержание
8a. Квантовая механика I - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Далее, матричные элементы H ij — это тоже амплитуды, которые можно записывать в виде < i | H | j >; наше дифференциальное уравнение выглядит тогда так:
Мы видим, что —i/h <1| H | j > — это амплитуда того, что в физических условиях, описываемых матрицей Н, состояние | j > за время dt «генерирует» состояние | i >. (Все это неявно подразумевалось в рассуждениях гл. 6, § 4.)
Теперь, следуя идеям гл. 6, § 2, мы можем сократить в (9.17) общий «множитель» < i |, поскольку (9.17) справедливо при любом | i >, и записать это уравнение просто в виде
Или, сделав еще один шаг, убрать к тому же и j и написать
В гл. 6 мы указывали, что при такой записи Н в Н | j > или в Н |y> называется оператором. Отныне на операторы мы будем надевать маленькие шапочки (^), чтобы напоминать вам, что это оператор, а не число. Мы будем писать
. Хотя оба уравнения (9.18) и (9.19) означают в точности то же самое, что и (9.15) или (9.17), мы можем думать о них совершенно иначе. Например, уравнение, (9.18) можно было бы описывать так: «Производная по времени от вектора состояния |y> равняется тому, что получается от действия оператора Гамильтона Н на каждое базисное состояние, умноженному на амплитуду < j |y> того, что y окажется в состоянии j, и просуммированному по всем j ». Или уравнение (9.19) можно описать так: «Производная по времени (умноженная на ih) от состояния |y> равняется тому, что вы получите, если подействуете гамильтонианом Н на вектор состояния |y>». Это просто сокращенный способ выражения того, что содержится в (9.17), но, как вы потом убедитесь, он может оказаться очень удобным.
Если хотите, идею «абстрагирования» можно продвинуть еще на шаг. Уравнение (9.19) справедливо для всякого состояния |y>. Кроме того, левая сторона ihd/dt — это тоже оператор; его действие: «продифференцируй по t и умножь на ih». Итак, (9.19) можно рассматривать как уравнение между операторами — операторное уравнение
Ih(d/dt)=
Оператор Гамильтона (с точностью до константы), действуя на любое состояние, приводит к тому же результату, что и d/dt. Помните, что это уравнение, как и (9.19), не есть утверждение о том, что оператор просто та же операция, что и d/dt. Эти уравнения — динамический закон природы (закон движения) для квантовой системы.
Только для того, чтобы попрактиковаться в этих представлениях, продемонстрируем вам другой вывод уравнения (9.18). Вы знаете, что любое состояние |y> можно записать через его проекции на какой-то базис [см. (6.8)]:
Как же меняется |y> во времени? Продифференцируем его:
Но базисные состояния | i > во времени неменяются (по крайней мере у нас они всегда были определенными, закрепленными состояниями), и только амплитуды < i |y>—это числа, которые могут меняться. Иначе говоря, (9.21) прекращается в
Но ведь d < i |y>/dt нам известно—это (9.16); получается, следовательно,
А это опять-таки уравнение (9.18).
Итак, на гамильтониан можно смотреть по-разному. Можно рассматривать совокупность коэффициентов H ij просто как компанию чисел, можно говорить об «амплитудах» < i | Н |j>, можно представлять себе «матрицу» H ij и можно считать его
«оператором» H^ . Все это одно и то же.
Вернемся теперь к нашей системе с двумя состояниями. Если уж мы записываем гамильтониан через матрицы сигма (с подходящими численными множителями, такими, как В х и т. д.), то естественно рассматривать и s x ijкак амплитуду < i |s х | j >, или, для краткости, как оператор s^ л. Если применить эту идею оператора, то уравнение движения состояния |y> в магнитном поле можно написать в виде
Желая «использовать» это уравнение, нам, естественно, приходится выражать |y> через базисные векторы (равносильно тому, что приходится находить компоненты пространственных векторов, когда задача доводится до числа). Так что обычно мы предпочитаем расписывать (9.23) в более раскрытом виде:
Сейчас вы увидите, чем красива идея оператора. Чтобы применять уравнение (9.24), нужно знать, что будет, когда операторы о подействуют на каждое базисное состояние. Напишем s^ z |+>; это какой-то вектор |?>, но какой? Что ж, умножим его слева на <+| и получим
(пользуясь табл. 9.1). Итак, мы знаем, что
<+|?>=1. (9.25)
Теперь умножим s^ z|+> слева на <-|. Получится
т, е.
Существует только один вектор состояния, удовлетворяющий и (9.25), и (9.26); это |+>. Мы, стало быть, открыли, что
Такого рода рассуждениями можно легко показать, что все свойства матриц сигма могут быть в операторных обозначениях описаны рядом правил, приведенных в табл. 9.3.
Таблица 9.3 · СВОЙСТВА ОПЕРАТОРА s^
Интервал:
Закладка: