Ричард Фейнман - 7. Физика сплошных сред

Тут можно читать онлайн Ричард Фейнман - 7. Физика сплошных сред - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    7. Физика сплошных сред
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.3/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 7. Физика сплошных сред краткое содержание

7. Физика сплошных сред - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

7. Физика сплошных сред - читать онлайн бесплатно полную версию (весь текст целиком)

7. Физика сплошных сред - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Фиг. 33.3. Векторы, распространения k, k' и k" для падающей, отраженной и прелом­ленной волн.

Электрический вектор в падающей волне может быть записан в виде

Поскольку вектор kперпендикулярен оси z то kr k x xk y y 3312 - фото 117

Поскольку вектор kперпендикулярен оси z, то

k·r =k x x+k y y. (33.12) Отраженную волну мы запишем как

так что ее частота равна w волновое число kа амплитуда Е 0 Мы конечно - фото 118

так что ее частота равна w', волновое число k',а амплитуда Е' 0. (Мы, конечно, знаем, что частота и величина вектора kв отра­женной волне те же, что и в падающей волне, но не хотим пред­полагать даже это. Пусть это все получится само собой из мате­матического аппарата.) Наконец, запишем преломленную волну:

Вы знаете что одно из уравнений Максвелла дает соотношение 339 так что - фото 119

Вы знаете, что одно из уравнений Максвелла дает соотноше­ние (33.9), так что для каждой из волн

Кроме того если показатели преломления двух сред мы обозначим через n 1 и n - фото 120

Кроме того, если показатели преломления двух сред мы обозна­чим через n 1 и n 2, то из уравнения (33.10) получится

Поскольку отраженная волна находится в том же материале то в то время - фото 121

Поскольку отраженная волна находится в том же ма­териале, то

в то время как для преломленной волны 3 Граничные условия Все что - фото 122

в то время как для преломленной волны

3 Граничные условия Все что мы делали до сих пор было описанием трех - фото 123

§ 3. Граничные условия

Все что мы делали до сих пор, было описанием трех волн; теперь нам предстоит выразить параметры отраженной и пре­ломленной волн через параметры падающей. Как это сделать?

Три описанные нами волны удов­летворяют уравнениям Максвелла в однородном материале, но, кро­ме того, уравнения Максвелла должны удовлетворяться и на границе между двумя материалами. Так что нам нужно сейчас посмотреть — что же происходит на самой границе. Мы най­дем, что уравнения Максвелла требуют, чтобы три волны опре­деленным образом согласовывались друг с другом.

Вот один из примеров того, что мы имеем в виду. Составляю­щая по оси у электрического поля Едолжна быть одинакова по обеим сторонам границы. Это требуется законом Фарадея:

С X E= д B/ д t, (33.19)

в чем нетрудно убедиться. Рассмотрим для этого маленькую петлю Г, которая с обеих сторон охватывает границу (фиг. 33.4).

7 Физика сплошных сред - изображение 124

Фиг. 33.4. Граничное условие E y 2 =E y 1 , полученное из равенства 7 Физика сплошных сред - изображение 125

Согласно уравнению (33.19), криволинейный интеграл от Епо петле Г равен скорости изменения потока Вчерез эту петлю:

Вообразите теперь что прямоугольник очень узок так что он замыкается в - фото 126

Вообразите теперь, что прямоугольник очень узок, так что он замыкается в бесконечно малой области. Если при этом поле В остается конечным (нет никаких причин ему быть бесконечным!), то поток через эту область будет равен нулю. Таким образом, контурный интеграл от Едолжен быть нулем. Если y-компоненты поля на двух сторонах границы равны Е y 1и Е y 2, а длина прямоугольника равна l, то мы получаем

E y 1 l-E y 2 l=0

или

Е у1 у 2 , (33.20)

как мы и ожидали. Это условие дает нам одно соотношение между полями в трех волнах.

Процедура нахождения следствий уравнений Максвелла на границе называется «определением граничных условий». Обычно она заключается в нахождении стольких уравнений типа (33.20), сколько возможно, и выполняется она с помощью рассмотрении маленьких прямоугольников, подобных Г на фиг. 33.4, или маленьких гауссовых поверхностей, охватываю­щих границу с двух сторон. Хотя это совершенно правильный способ рассуждений, он создает впечатление, что в различных физических задачах с границами нужно обращаться по-разному.

Как, например, в задаче о тепловом потоке через поверх­ность определить температуру на обеих прилежащих к ней сторонах? Конечно, вы вправе утверждать, что тепло, прите­кающее к границе с одной стороны, должно быть равно теплу, утекающему от нее с другой. Обычно это возможно и, вообще говоря, очень полезно находить граничные условия из такого рода физических рассуждений. Однако могут встретиться случаи, когда при работе над какой-то проблемой вам известны лишь уравнения и вы не можете непосредственно увидеть, какие же физические аргументы можно использовать. Так что, хотя в данный момент мы заинтересованы только в электромаг­нитных явлениях, где можно привести физические аргументы, я хочу научить вас методу, который можно применить в любой задаче: общему методу нахождения непосредственно из диффе­ренциальных уравнений того, что происходит на границе.

Начнем с выписывания всех уравнений Максвелла для ди­электрика, но на этот раз скрупулезно выписывая все компо­ненты:

Эти уравнения должны быть справедливы как в области 1 слева от границы так и - фото 127

Эти уравнения должны быть справедливы как в области 1 слева от границы так и - фото 128

Эти уравнения должны быть справедливы как в области 1 (слева от границы), так и в области 2 (справа от нее). Мы уже выписывали решения в областях 1 и 2. Они должны удовлет­воряться и на самой границе, которую мы можем назвать об­ластью 3. Хотя обычно мы считаем границу чем-то абсолютно резким, на самом деле таких границ не бывает. Физические свойства, правда, изменяются очень быстро, но все же не беско­нечно быстро. Во всяком случае, мы можем считать, что между областями 1 и 2 изменение показателя преломления хотя и очень быстрое, но непрерывное. Это небольшое расстояние, на котором оно происходит, мы можем назвать областью 3. Подобный же переход в области 3 будут претерпевать и другие характери­стики поля, такие, как Р х или Е y и т. п. Однако дифферен­циальные уравнения должны удовлетворяться; именно следуя за дифференциальными уравнениями в этой области, мы придем к необходимым «граничным условиям».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




7. Физика сплошных сред отзывы


Отзывы читателей о книге 7. Физика сплошных сред, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x