Ричард Фейнман - 7. Физика сплошных сред

Тут можно читать онлайн Ричард Фейнман - 7. Физика сплошных сред - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    7. Физика сплошных сред
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.3/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 7. Физика сплошных сред краткое содержание

7. Физика сплошных сред - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

7. Физика сплошных сред - читать онлайн бесплатно полную версию (весь текст целиком)

7. Физика сплошных сред - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

У подавляющего большинства материалов полный магнитный момент появляется только тогда, когда там присутствуют атомы с незаполненной внутренней электронной оболочкой. Благода­ря этому они могут иметь суммарный момент количества дви­жения и магнитный момент. Такие атомы принадлежат к «пере­ходным элементам» периодической таблицы Менделеева, на­пример: хром, марганец, железо, никель, кобальт, палладий и платина — элементы как раз такого сорта. Кроме того, все редкоземельные элементы имеют незаполненную внутреннюю оболочку, а следовательно, и постоянные магнитные моменты. Правда, встречаются еще странные вещества (к числу их отно­сятся жидкий кислород и окись азота), которые, оказывается, тоже обладают магнитным моментом, но объяснить причины этих странностей я предоставляю химикам.

Предположим теперь, что у нас есть ящик, наполненный молекулами или атомами с постоянным магнитным моментом, скажем газ, жидкость или кристалл. Нам хочется знать, что получится, если мы поместим его во внешнее магнитное поле. В отсутствие магнитного поля атомы сбиваются тепловым движением и их магнитные моменты распределяются по всем направлениям. Но когда действует магнитное поле, оно выстра­ивает эти маленькие магнитики, так что магнитных моментов, направленных по полю, становится больше, чем направленных против него. Материал «намагничивается».

Намагниченность Мматериала мы определяем как полный магнитный момент единицы объема, под которым мы понимаем векторную сумму всех атомных магнитных моментов единицы объема. Если среднее число атомов в единице объема равно N, а их средний момент равен < m> cp, то Мможно записать как про­изведение N на средний магнитный момент:

м= n< m> cp. (35.8)

Это определение Маналогично определению электрической поляризации Р, данному в гл. 10 (вып. 5).

Классическая теория парамагнетизма, как вы уже убедились в гл. 10 (вып. 5), в точности аналогична теории диэлектрической проницаемости. Предполагается, что магнитный момент m каждого из атомов всегда имеет одну и ту же величину, но может быть направлен в любую сторону. Магнитная энергия в поле В равна - m·B=-mBcosq, где q — угол между моментом и полем. Согласно статистической физике, относительная вероят­ность угла равна e - энергия / kTтак что угол 0° более вероятен, чем угол p. Следуя в точности по пути, проделанному нами в гл. 11, § 3 (вып. 5), мы обнаружим, что для слабых магнитных полей Мнаправлена параллельно Ви имеет величину

См выражение 1120 вып 5 Эта приближенная формула верна только когда - фото 196

[См. выражение (11.20), вып. 5.] Эта приближенная формула верна, только когда отношение m B/kT много меньше единицы.

Мы нашли, что намагниченность, т. е. магнитный момент единицы объема, пропорциональна магнитному полю. Это яв­ление и называется парамагнетизмом. Вы увидите, что эффект сильнее проявляется при низких температурах и слабее при высоких. При помещении вещества в магнитное поле возникаю­щий в нем магнитный момент в случае слабых полей пропор­ционален величине поля. Отношение М к В (для слабых полей) называется магнитной восприимчивостью.

Рассмотрим теперь парамагнетизм с точки зрения квантовой механики. Обратимся сначала к атомам со спином 1 / 2 . Если в отсутствие магнитного поля атомы обладают вполне определенной энергией, то в магнитном поле энергия изменится; возможны два значения энергии для разных значений J z. Для J z=+h/2

магнитное поле изменяет энергию на величину

Для атомов сдвиг энергии DU положителен ибо заряд электрона отрицателен - фото 197

(Для атомов сдвиг энергии DU положителен, ибо заряд элек­трона отрицателен.) Для J г=- h/2 энергия изменяется на величину

Для сокращения записи обозначим тогда DU m 0 В 3513 - фото 198

Для сокращения записи обозначим

тогда DU m 0 В 3513 Совершенно ясен и смысл m 0 m 0 равно - фото 199

тогда

DU = ±m 0 В. (35.13)

Совершенно ясен и смысл m 0; — m 0 равно z-компоненте маг­нитного момента для спина, направленного вверх, а + m 0равно z-компоненте магнитного момента в случае спина, на­правленного вниз.

Статистическая механика говорит нам, что вероятность нахождения атома в каком-то состоянии пропорциональна

g - (энергия состояния)/ kT .

В отсутствие магнитного поля энергия обоих состояний одна и та же, поэтому в случае равновесия в магнитном поле ве­роятности пропорциональны

е - D U / kT , (35.14)

Число же атомов в единице объема со спином, направленным вверх, равно

а со спином направленным вниз Постоянная а должна определяться из - фото 200

а со спином, направленным вниз,

Постоянная а должна определяться из условия N вверхN внизN 3517 те - фото 201

Постоянная а должна определяться из условия

N вверх+N вниз=N (35.17)

т.е. равна полному числу атомов в единице объема. Таким образом, мы получаем

Однако нас интересует средний магнитный момент в направлении оси z Каждый - фото 202

Однако нас интересует средний магнитный момент в на­правлении оси z. Каждый атом со спином, направленным вверх, дает в этот момент вклад, равный -m 0, а со спином, направленным вниз, + m 0, так что средний момент будет

Тогда М магнитный момент единицы объема будет равен N ср Воспользовавшись - фото 203

Тогда М — магнитный момент единицы объема — будет равен N ср. Воспользовавшись выражениями (35.15)—(35.17), по­лучим

Это и есть квантовомеханическая формула для М в случае атомов со спином j 1 - фото 204

Это и есть квантовомеханическая формула для М в случае атомов со спином j= 1/ 2. К счастью, ее можно записать более коротко через гиперболический тангенс:

График зависимости М он В приведен на фиг 357 Фиг 357 Изменение - фото 205

График зависимости М он В приведен на фиг. 35.7.

Фиг 357 Изменение намагниченности парамагнетика при изменении напряженности - фото 206

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




7. Физика сплошных сред отзывы


Отзывы читателей о книге 7. Физика сплошных сред, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x