Ричард Фейнман - 7. Физика сплошных сред

Тут можно читать онлайн Ричард Фейнман - 7. Физика сплошных сред - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    7. Физика сплошных сред
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.3/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 7. Физика сплошных сред краткое содержание

7. Физика сплошных сред - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

7. Физика сплошных сред - читать онлайн бесплатно полную версию (весь текст целиком)

7. Физика сплошных сред - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Фиг. 35.7. Изменение намаг­ниченности парамагнетика при изменении напряженности магнитного поля В .

Когда поле В становится очень большим, гиперболический тангенс приближается к единице, а М — к своему предельному зна­чению Nm 0. Таким образом, при сильных полях происходит насыщение. Нетрудно понять, почему так получается — ведь при достаточно больших полях все магнитные моменты выстраи­ваются в одном и том же направлении. Другими словами, при насыщении все атомы находятся в состоянии со спинами, направленными вниз, и каждый из них дает вклад в магнитный момент, равный m 0.

Обычно при комнатной температуре и полях, которые можно получить (порядка 10000 гс), отношение m 0 B/kT равно при­близительно 0,02. Чтобы наблюдать насыщение, необходимо спуститься до очень низких температур. Для комнатной и более высоких температур обычно можно thx заменить на x и написать

Точно так же как и в классической теории намагниченность М оказывается - фото 207

Точно так же, как и в классической теории, намагничен­ность М оказывается пропорциональной полю В. Даже формула оказывается той же самой, за исключением того, что в ней, по-видимому, где-то потерян множитель 1 / 3 . Но нам еще нужно связать m 0 в квантовомеханической формуле с величиной m , которая появилась в классическом результате, в выражении (35.9).

В классической формуле у нас появилось m 2 =m·m— квадрат вектора магнитного момента, или

В предыдущей главе я уже говорил что очень часто правильный ответ можно - фото 208

В предыдущей главе я уже говорил, что очень часто правильный ответ можно получить из классических вычислений с заменой J·Jна j (j+1)h 2 . В нашем частном примере j= 1/ 2, так что

j(j+1)h 2= 3/ 4h 2.

Подставляя этот результат вместо J·Jв (35.23), получаем

или вводя величину m 0 определенную соотношением 3512 получаем mm3m - фото 209

или, вводя величину m 0 , определенную соотношением (35.12), получаем

m·m=3m 2 0.

Подставляя это вместо m 2в классическое выражение (35.9), мы действительно воспроизведем истинный квантовомеханический результат — формулу (35.22).

Квантовая теория парамагнетизма легко распространяется на атомы с любым спином j. При этом для намагниченности в слабом поле получим

где представляет комбинацию постоянных с размерностью магнитного - фото 210

где

представляет комбинацию постоянных с размерностью магнитного момента Моменты - фото 211

представляет комбинацию постоянных с размерностью магнит­ного момента. Моменты большинства атомов приблизительно равны этой величине. Она называется магнетоном Бора. Спи­новый магнитный момент электрона почти в точности равен

§ 5. Охлаждение адиабатическим размагничиванием

Парамагнетизм имеет одно весьма интересное применение. При очень низкой температуре и в сильном магнитном поле атомные магнитики выстраиваются. При этом с помощью про­цесса, называемого адиабатическим размагничиванием, можно получить самые низкие температуры. Возьмем какую-то пара­магнитную соль, содержащую некоторое число редкоземель­ных атомов (например, аммиачный нитрат празеодима), и начнем охлаждать ее жидким гелием до 1—2° К в сильном магнитном поле. Тогда показатель m В/kT будет больше единицы, скажем 2 или 3. Большинство спинов направлено вверх, и намагни­ченность почти достигает насыщения. Для облегчения давайте считать, что поле настолько велико, а температура так низка, что все атомы смотрят в одном направлении. Теплоизолируйте затем соль (удалив, например, жидкий гелий и создав вакуум) и выключите магнитное поле. При этом температура соли падает.

Если бы это поле вы выключили внезапно, то раскачивание и сотрясение атомов кристаллической решетки постепенно перепутало бы все спины. Некоторые из них остались бы на­правленными вверх, а другие повернулись бы вниз. Если ника­кого поля нет (и если не учитывать взаимодействия между атом­ными магнитами, которое привносит только небольшую ошибку), то на переворачивание магнитиков энергии не потребуется. Поэтому случайное распределение спинов установится без какого-либо изменения температуры.

Предположим, однако, что в то время как спины перевора­чиваются, магнитное поле еще не вполне исчезло. Тогда для переворачивания спинов против поля требуется некоторая работа, она должна затрачиваться на преодоление поля. Этот процесс отбирает энергию у теплового движения и понижает температуру. Таким образом, если сильное магнитное поле выключается не слишком быстро, температура соли будет уменьшаться. Размагничиваясь, она охлаждается. С точки зрения квантовой механики, когда поле сильно, все атомы находятся в наинизшем состоянии, так как слишком много шансов против того, чтобы они находились в высшем состоянии. Но как только напряженность поля понижается, тепловые флуктуации со все большей и большей вероятностью будут «выталкивать» атомы на высшее состояние, и когда это происходит, атом поглощает энергию DU=m 0B. Таким образом, если магнитное поле выключается медленно, магнитные переходы могут отбирать энергию у тепловых колебаний кристалла, тем самым охлаждая его. Таким способом можно понизить температуру от нескольких градусов до температуры в несколько тысячных долей градуса от абсолютного нуля.

А если нам захочется охладить что-то еще сильнее? Оказы­вается, что здесь природа тоже была очень предусмотрительной. Я уже упоминал, что магнитные моменты есть и у атомных ядер. Наши формулы для парамагнетизма работают и в случае ядер, только надо иметь в виду, что моменты ядер приблизительно в тысячу раз меньше. (По порядку величины они равны qh/2m p , где m p масса протона, так что они меньше в число раз, равное отношению масс протона и электрона.) Для таких магнитных моментов даже при температуре 2° К показатель m B/kT со­ставляет всего несколько тысячных. Но если мы используем парамагнитное размагничивание и достигнем температуры не­скольких тысячных градуса, то m B/kT становится порядка единицы; при столь низких температурах мы уже можем гово­рить о насыщении ядерного магнетизма. Это очень кстати, ибо теперь, воспользовавшись адиабатическим размагничиванием системы магнитных ядер, можно достичь еще более низких температур. Таким образом, в магнитном охлаждении возмож­ны две стадии. Сначала мы используем диамагнитное размагни­чивание парамагнитных ионов и спускаемся до нескольких тысячных долей градуса. Затем мы применяем холодную пара­магнитную соль для охлаждения некоторых материалов, обла­дающих сильным ядерным магнетизмом. И, наконец, когда мы выключаем магнитное поле, температура материалов дохо­дит до миллионных долей градуса от абсолютного нуля, если, конечно, все было проделано достаточно тщательно.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




7. Физика сплошных сред отзывы


Отзывы читателей о книге 7. Физика сплошных сред, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x