Ричард Фейнман - 6a. Электродинамика
- Название:6a. Электродинамика
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 6a. Электродинамика краткое содержание
6a. Электродинамика - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Поскольку последние три слагаемых в формуле (25.7) представляют просто трехмерное скалярное произведение, то часто удобнее принять такую запись:
Очевидно, что введенную выше четырехмерную длину можно записать как а mа m:
(25.8)
Но иногда удобно эту величину записать как а 2 m :
Продемонстрируем теперь плодотворность четырехмерного скалярного произведения. Антипротоны (р') получают на больших ускорителях из реакции
Иначе говоря, высокоэнергетический протон сталкивается с покоящимся протоном (например, с помещенной в пучок водородной мишенью), и если падающий протон обладает достаточной энергией, то вдобавок к двум первоначальным протонам может родиться пара протон—антипротон.
Какой энергией должен обладать падающий протон, чтобы эта реакция стала энергетически возможной?
Ответ легче всего получить, рассмотрев эту реакцию в системе центра масс (ц. м.) (фиг. 25.1). Назовем падающий протон протоном а, а его четырехимпульс обозначим через р a m . Аналогично, протон мишени назовем b , а его четырехимпульс обозначим через р b m . Если энергии падающего протона как раз достаточно для реакции, то в конечном состоянии (т. е. в состоянии после соударения) образуется система, содержащая три протона и антипротон, покоящиеся в системе ц. м. Если энергия падающего протона будет несколько выше, то частицы в конечном состоянии вылетят с некоторой кинетической энергией и будут разлетаться в стороны; если же она немного ниже, то ее будет недостаточно для образования четырех частиц.
Пусть р с m — полный четырехимпульс всей системы в конечном состоянии, тогда, согласно закону сохранения энергии и
а комбинируя эти два выражения, можно написать
(25.9)
Теперь еще одно важное обстоятельство: поскольку мы получили уравнение для четырехвекторов, то оно должно выполняться в любой инерциальной системе. Этим фактом можно воспользоваться для упрощения вычислений. Напишем длины каждой из частей (25.9), которые, разумеется, тоже должны быть равны друг другу, т. е.
(25.10)
Так как р с m р с m — инвариант, то можно вычислить его в какой-то одной системе координат. В системе ц. м. временная компонента р с mравна энергии покоя четырех протонов, т. е. 4М, а пространственная часть р равна нулю, так что р с m = (4М, 0). При этом мы воспользовались равенством масс протона и антипротона, обозначив их одной буквой М.
Таким образом, уравнение (25.10) принимает вид
(25.11)
Произведения р а mр а mи p b mp b m , вычисляются очень быстро: «длина» четырехвектора импульса любой частицы равна просто квадрату ее массы:
Это можно доказать прямыми вычислениями или, несколько более эффектно, простым замечанием, что в системе покоя частицы р m =(М, 0), а следовательно, р m р m=М 2. А так как это инвариант, то он равен М 2в любой системе отсчета. Подставляя результаты в уравнение (25.11), мы получаем
или
(25.12)
Теперь можно вычислить р а mр b mв лабораторной системе. В этой системе четырехвектор р а м = (Е а , р а ), а р b m =(М, 0), ибо он описывает покоящийся протон. Итак, р а m р b mдолжно быть равно МЕ а , а мы знаем, что скалярное произведение — это инвариант, поэтому оно должно быть равно значению, найденному нами в (25.12). В результате получается
Полная энергия падающего протона должна быть по меньшей мере равна 1М (что составляет около 6,6 Гэв, так как М=938 Мэв) или после вычитания массы покоя М получаем, что кинетическая энергия должна быть равна по меньшей мере 6 М (около 5,6 Гэв). Именно с тем, чтобы иметь возможность производить антипротоны, бетатрон в Беркли проектировался на кинетическую энергию ускоренных протонов около 6.2 Гэв.
Скалярное произведение — инвариант, поэтому полезно знать его величину. Что, например, можно сказать о «длине» четырехвектора скорости u mu m?
т. е. u m — единичный четырехвектор.
§ 3. Четырехмерный градиент
Следующей величиной, которую нам следует обсудить, является четырехмерный аналог градиента. Напомним (см. гл. 14, вып. 1), что три оператора дифференцирования д/дх, д/ду, d/dz преобразуются подобно трехмерному вектору и называются градиентом. Та же схема должна работать и в четырех измерениях; по простоте вы можете подумать, что четырехмерным градиентом должны быть (d/dt, д/дх, д/ду d/dz), но это неверно.
Чтобы обнаружить ошибку, рассмотрим скалярную функцию, которая зависит только от х и t. Приращение j при малом изменении t на Dt и постоянном х равно
(25.13)
С другой стороны, с точки зрения движущегося наблюдателя
Используя уравнение (25.1), мы можем выразить D х' и D t' через D t. Вспоминая теперь, что величина х постоянна, так
что Dx=0, мы пишем
Интервал:
Закладка: