Ричард Фейнман - 6a. Электродинамика
- Название:6a. Электродинамика
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 6a. Электродинамика краткое содержание
6a. Электродинамика - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
(25.31)
который можно назвать «гауссовой электрической несообразностью». Продолжая этот процесс, вы можете ввести U 3, U 4и т. д. для каждого из физических законов.
Наконец, полной несообразностью мира U вы называете сумму U i,- для каждого из различных явлений, т. е. U=2Ui .
И тогда «великий закон природы» гласит:
(25.32)
Этот «закон», разумеется, утверждает лишь, что сумма квадратов всех отдельных отклонений равна нулю, однако единственный способ сделать сумму квадратов множества членов равной нулю — это приравнять нулю каждое из ее слагаемых.
Таким образом, «удивительно простой закон» (25.32) эквивалентен целому ряду уравнений, которые вы писали первоначально. Поэтому совершенно очевидно, что простые обозначения, скрывающие сложности за определением символов,— это еще не истинная простота. Это только трюк. Так и в выражении (25.32) за кажущейся простотой скрывается несколько уравнений; это снова не более чем трюк. Развернув их, вы снова получите то, что было раньше.
Однако закон электродинамики, написанный в форме уравнения (25.29), содержит нечто большее, чем простую запись; в векторном анализе, кроме простоты записи, также есть нечто большее. Тот факт, что уравнения электромагнетизма можно записать в особых обозначениях, которые специально приспособлены для четырехмерной геометрии преобразований Лоренца, иначе говоря, как векторные уравнения в четырехмерном мире, означает, что они инвариантны относительно преобразований Лоренца. Именно потому, что уравнения Максвелла инвариантны относительно этих преобразований, их можно записать в столь красивом виде.
В том, что законы электродинамики можно записать в форме элегантного уравнения (25.29), нет ничего случайного. Теория относительности была развита именно потому, что экспериментально подтвердилась неизменность предсказанных уравнением Максвелла явлений в любой инерциальной системе. Именно при изучении трансформационных свойств уравнений Максвелла Лоренц открыл свои преобразования как преобразования, оставляющие инвариантными эти уравнения.
Однако есть и другая причина записывать уравнения в таком виде. Было обнаружено, что все законы физики должны быть инвариантными относительно преобразований Лоренца (первый об этом догадался Эйнштейн). Таково содержание принципа относительности. Поэтому если вы изобрели обозначения, которые сразу же показывают, инвариантен ли выписанный нами закон, то можно гарантировать, что при попытке создать новую теорию вы будете писать только уравнения, согласующиеся с принципом относительности.
В простоте уравнений Максвелла в этих частных обозначениях никакого чуда нет. Обозначения специально были придуманы именно для них. Самая интересная с физической точки зрения вещь состоит в том, что любой физический закон (будь то распространение мезонных волн, или поведение нейтрино в b-распаде, или что-то другое) должен иметь ту же самую инвариантность относительно тех же преобразований. Так что если ваш звездолет движется с постоянной скоростью, то все законы природы вместе преобразуются так, что никаких новых явлений не возникает. Именно благодаря тому, что принцип относительности является законом природы, уравнения нашего мира в четырехмерных обозначениях должны выглядеть гораздо проще.
*Вас может удивить, почему же мы не пользуемся реакцией
Или даже
для которой, несомненно, требуется меньшая энергия? Все дело в принципе, называемом сохранением барионного заряда, согласно которому величина, равная числу протонов минус число антипротонов, не может измениться. В левой стороне нашей реакции эта величина равна 2. Следовательно, если мы хотим справа иметь антипротон, то ему должны сопутствовать еще три протона (или других бариона).
* В английском оригинале «unworldliness». — Прим. ред.
Глава 26
ЛОРЕНЦЕВЫ ПРЕОБРАЗОВАНИЯ ПОЛЕЙ
§ 1. Четырехмерный потенциал движущегося заряда
§ 2. Поля точечного заряда, движущегося с постоянной скоростью
§ 3. Релятивистское преобразование полей
§ 4. Уравнение движения в релятивистских обозначениях
В этой главе c=1
Повторить: гл. 20 «Решение уравнений Максвелла в пустом пространстве»
§ 1. Четырехмерный потенциал движущегося заряда
В предыдущей главе мы видели, что потенциал A m=(j, А) является четырехвектором. Его временной компонентой служит скалярный потенциал j, а тремя пространственными компонентами— векторный потенциал А. Используя преобразования Лоренца, мы нашли также потенциал частицы, движущейся прямолинейно с постоянной скоростью. (В гл. 21 то же самое было сделано несколько иным методом.) Для точечного заряда, координаты которого в момент t равны (vt, 0, 0), потенциалы в точке (х, у, z) имеют вид
(26.1)
Уравнения (26.1) дают потенциалы в точке х, у, z в момент t, возникающие от движущегося заряда, «истинное» положение которого (имеется в виду положение в момент времени t) x=vt. Заметьте, что в уравнение входят координаты (x-vt), у и z, которые являются координатами относительно переменного положения Р движущегося заряда (фиг. 26.1). Но, как вы знаете, истинное влияние распространяется на самом деле со скоростью с, так что поле в точке определяется на самом деле запаздывающим положением заряда Р', координата х которого равна vt' (где t'=t-r'/с — «запаздывающее» время».)
Фиг. 26.1. Определение полей в точке P от заряда q, движущегося вдоль оси x с постоянной скоростью v. (Поле в точке (x, y, z) в «настоящий момент» можно выразить как через «истинное» положение P так и через «запаздывающее» положение P’ (т. е. положение в момент t’=t-r’/c).
Нам, однако, известно, что заряд двигался с постоянной скоростью по прямой линии, поэтому естественно, что поведение в точке Р' непосредственно связано с переменным положением заряда. Фактически, если мы добавим предположение, что потенциалы зависят только от положения и скорости в запаздывающий момент, тогда уравнение (26.1) будет представлять собой полную формулу для потенциалов заряда, движущегося любым образом. Вот как все это работает. Пусть у вас имеется заряд, движущийся каким-то произвольным образом, скажем, по траектории, изображенной на фиг. 26.2, и вы пытаетесь найти потенциал в точке (х, у, z ). Прежде всего вы находите запаздывающее положение Р' и скорость v ' в этой точке. Вообразите затем, что заряд сохраняет свое движение с этой скоростью на весь период запаздывания (t'-t), так что он появился бы затем в воображаемом положении Р пр, которое мы будем называть «проекционным», причем двигаясь с той же скоростью v'. (На самом деле он, конечно, не делает этого; в момент t он находится в точке Р.) Тогда потенциалы в точке (х, у, z) будут как раз такими, которые дали бы уравнения (26.1) для воображаемого заряда в проекционном положении Р пр. Мы хотим здесь сказать, что, поскольку потенциалы зависят только от того, что делает заряд в запаздывающий момент, они будут одинаковы, независимо от того, продолжает ли заряд свое движение с постоянной скоростью или изменяет его после момента t' , т. е. после того, как потенциалы, которые возникнут в момент t в точке (х, у, z ), уже определены.
Читать дальшеИнтервал:
Закладка: