Ричард Фейнман - 6a. Электродинамика

Тут можно читать онлайн Ричард Фейнман - 6a. Электродинамика - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    6a. Электродинамика
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.22/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 6a. Электродинамика краткое содержание

6a. Электродинамика - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

6a. Электродинамика - читать онлайн бесплатно полную версию (весь текст целиком)

6a. Электродинамика - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Фиг. 26.3. Электрическое поле заряда, движущегося с постоянной скоростью, направ­лено по радиусу от истинного положения заряда.

Рассмотрим сначала точки, для которых z= 0. Поле Е в этих точках имеет только х- и y-компоненты. Из уравнений (26.3) и (26.6) видно, что отношение этих компонент как раз равно отно­шению х- и y-компонент вектора перемещения. Это означает, что направление Е совпадает с направлением r p , как это пока­зано на фиг. 26.3. Тот же результат остается справедливым и для трех измерений, поскольку E z пропорционально z. Короче говоря, электрическое поле заряда радиально и силовые линии расходятся от заряда так же, как и в стационарном случае. Конечно, вследствие наличия дополнительного фактора (1-v 2 ) поле не будет тем же самым, что в стационарном случае. Но здесь мы можем увидеть нечто очень интересное. Дело обстоит так, как будто вы пишете закон Кулона в особой системе коорди­нат, «сжатой» вдоль оси x множителем Ц(1-v 2) Если вы сделаете это, то силовые линии впереди и позади заряда разойдутся, а по бокам сгустятся (фиг. 26.4).

Если мы связываем обычным образом напряженность поля Е с плотностью силовых линий, то видим, что поле впереди и по­зади заряда ослабевает, но зато по бокам становится сильнее, т. е. как раз то, о чем говорит нам уравнение. Когда вы изме­ряете напряженность поля под прямыми углами к линии дви­жения, т. е. при (x-vt) = 0, расстояние от заряда будет равно y 2+z 2, а полная напряженность Ц( E 2 x +E 2 y ) в этих точках равна

2610 Она как и в случае кулонова поля пропорциональна квадрату - фото 265

(26.10)

Она, как и в случае кулонова поля, пропорциональна квад­рату расстояния, но еще усиливается постоянным множителем 1/Ц(1-v 2), который всегда больше единицы. Таким образом, по бокам движущегося заряда электрическое поле сильнее, чем это следует из закона Кулона. Фактически увеличение по срав­нению с кулоновым потенциалом равно отношению энергии частицы к ее массе покоя.

Впереди заряда или позади него у и z равны нулю а поэтому 2611 Снова - фото 266

Впереди заряда (или позади него) у и z равны нулю, а поэ­тому

(26.11)

Снова поле обратно пропорционально расстоянию от заряда, но теперь оно зарезается множителем (1- v 2 ), что согласуется с картиной силовых линий. Если v/c мало, то v 2 /c 2 еще меньше, и действие (1-v 2) почти незаметно, поэтому мы снова возвра­щаемся к закону Кулона. Но если частица движется со скоро­стью, близкой к скорости света, то поле перед частицей сильно уменьшается, а поле сбоку чудовищно возрастает.

Наш результат, относящийся к электрическому полю заря­да, можно представить и так. Предположим, что вы на клочке бумаги нарисовали силовые линии покоящегося заряда, а за­тем эту картину запустили со скоростью v 2. Тогда благодаря лоренцеву сокращению рисунок сожмется, т. е. частички гра­фита на бумаге будут казаться нам расположенными в других местах. Но чудо состоит в том, что в результате на про­летающем мимо листочке вы увидите точную картину си­ловых линий точечного дви­жущегося заряда. Лоренцево сокращение сблизит их по бокам, раздвинет перед заря­дом и позади него как раз настолько, чтобы получить нужную плотность. Мы уже отмечали, что силовые ли­нии — это не реальность, а лишь способ представить себе электрическое поле. Однако здесь они ведут себя как самые настоящие реальные линии. В этом частном случае, если вы и сделали ошибку, рассматривая силовые ли­нии как нечто реальное и преобразуя их как реальные линии в пространстве, поле в результате все равно получилось бы пра­вильным.

Фиг 264 Электрическое поле заряда а неподвижного б летящего с - фото 267

Фиг . 26.4. Электрическое поле заряда.

а — неподвижного, блетящего с по­стоянной скоростью v =0,9 с.

Однако от этого силовые линии не станут более реаль­ными. Вспомните об электрическом поле, создаваемом зарядом вместе с магнитом; когда магнит движется, он создает новое электрическое поле и разрушает всю нашу прекрасную кар­тину. Так что простая идея сокращающейся картинки, вообще говоря, не годится. Но все же это очень удобный способ запом­нить, как выглядит поле быстро движущегося заряда.

Магнитное поле из уравнения 269 равно vXE Когда вы векторно помножите - фото 268

Магнитное поле [из уравнения (26.9)] равно vXE. Когда вы векторно помножите скорость на радиальное поле Е, то полу­чите поле В, силовые линии которого представляют окружности вокруг линии движения (фиг. 26.5). Если же теперь мы подста­вим обратно все с, то вы убедитесь, что результат получился тот же, что и для медленно движущихся зарядов. Хороший способ установить, куда должны войти с, — это вспомнить фор­мулу для силы:

6a Электродинамика - изображение 269

Вы видите, что произведение скорости на магнитное поле имеет ту же размерность, что и электрическое поле, так что в правой части (26.9) должен стоять множитель 1/с 2, т. е.

(26.12)

6a Электродинамика - изображение 270

Для медленно движущегося заряда (v << с) поле можно считать кулоновым, и тогда

(26.13)

Эта формула в точности соответствует магнитному полю тока, которое было найдено в гл. 14 (вып. 5).

Попутно мне хотелось бы отметить кое-что весьма интерес­ное просто для того, чтобы вы об этом подумали. (К обсуждению этого мы еще вернемся, но несколько позже.) Представьте себе два электрона, скорости которых перпендикулярны, так что пути их пересекаются, однако электроны не сталкиваются; один из них успевает проскочить перед другим. В какой-то момент их относительное положение будет таким, как изображено на фиг. 26.6, а.

Фиг 265 Магнитное поле вблизи движущегося заряда равно vXE ср с фиг - фото 271

Фиг 265 Магнитное поле вблизи движущегося заряда равно vXE ср с фиг - фото 272

Фиг. 26.5. Магнитное поле вблизи движущегося заряда равно vXE (ср. с фиг. 26.4).

Фиг. 26.6. Силы между двумя движущимися заря­дами не всегда равны и противоположны. «Действие», оказывается, не равно «противодействию».

Рассмотрим теперь силы, с которыми q 2 дей­ствует на q 1, и наоборот. На q 2со стороны q 1действует только электрическая сила, ибо q 1на линии своего движения не соз­дает магнитного поля. Однако на q 1кроме электрического поля, действует еще и магнитное, так что он движется и в магнитном поле, создаваемом зарядом q 2. Все эти силы показаны на фиг. 26.6, б. Электрические силы, действующие на q 1и q 2, равны по величине и противоположны по направлению. Однако на q 1еще действует и боковая (магнитная) сила, которой и в помине нет у q 2. Равно ли здесь действие противодействию? Поломайте голову над этим вопросом.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




6a. Электродинамика отзывы


Отзывы читателей о книге 6a. Электродинамика, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x