Ричард Фейнман - 6a. Электродинамика

Тут можно читать онлайн Ричард Фейнман - 6a. Электродинамика - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    6a. Электродинамика
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.22/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 6a. Электродинамика краткое содержание

6a. Электродинамика - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

6a. Электродинамика - читать онлайн бесплатно полную версию (весь текст целиком)

6a. Электродинамика - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вы понимаете, конечно, что в тот момент, когда получены формулы для потенциалов произвольно движущегося заряда, мы имеем полную электродинамику; из принципа суперпози­ции мы можем получить потенциалы для любого распределения зарядов.

Фиг 262 Движение заряда по произвольной траектории Потенциалы в точке - фото 251

Фиг. 26.2. Движение за­ряда по произвольной тра­ектории.

Потенциалы в точке (х, у, z) в момент t определяются положением Р' и скоростью v' в за­паздывающий момент t'— t-r' /с. Их удобно выражать через коор­динаты относительно «проек­ционного» положения P пр (ис­тинным положением в момент t является точка Р).

Следовательно, все явления электродинамики можно вывести либо из уравнений Максвелла, либо из следующего ряда замечаний. (Запомните их на случай, если вы вдруг очу­титесь на необитаемом острове. Исходя из них, можно восста­новить все. Преобразования Лоренца вы, конечно, помните. Не забывайте их ни на необитаемом острове, ни в каком-либо другом месте.)

Во-первых, А m четырехвектор. Во-вторых, кулонов по­тенциал любого покоящегося заряда равен q/4pe 0r. В-тре­тьих, потенциал, созданный зарядом, движущимся произволь­ным образом, зависит только от положения в запаздывающий момент времени. Из этих трех фактов вы можете получить все. Из того, что А m ~ четырехвектор, мы преобразованием кулонова потенциала, который известен, получим потенциал за­ряда, движущегося с постоянной скоростью. Затем из послед­него утверждения, что потенциал зависит только от скорости в запаздывающий момент, мы, используя проекционное положе­ние, можем их найти. Правда, это не очень-то удобный способ рассмотрения, но интересно убедиться в том, что законы физики можно сформулировать множеством самых различных способов.

Иногда кое-кто безответственно заявляет, что вся электро­динамика может быть получена только из преобразований Ло­ренца и закона Кулона. Это, конечно, совершенно неверно. Мы прежде всего должны предположить, что у нас имеются скаляр­ный и векторный потенциалы, которые в совокупности образуют четырехвектор. Это говорит нам, как преобразуются потен­циалы. Затем, откуда нам известно, что необходимо учитывать только эффект в запаздывающий момент? Или, еще лучше, по­чему потенциал зависит только от положения и скорости и не зависит, например, от ускорения? Ведь поля Е и В зависят все-таки и от ускорения. Если вы попытаетесь применить те же рассуждения к ним, то будете вынуждены признать, что они за­висят только от положения и скорости в запаздывающий мо­мент. Но тогда поле ускоряющегося заряда было бы таким же, как и поле от заряда в проекционном положении, а это неверно. Поля зависят не только от положения и скорости вдоль траек­тории, но и от ускорения. Так что в «великом» утверждении, что все можно получить из преобразования Лоренца, содержится еще несколько неявных дополнительных предположений. (Всегда, когда вы слышите подобное эффектное утверждение, что нечто большое можно построить на основе малого числа предположений,— ищите ошибку. Обычно неявно принимается довольно много такого, что оказывается далеко не очевидным, " если посмотреть внимательнее.)

§ 2. Поля точечного заряда, движущегося с постоянной скоростью

Итак, мы нашли потенциалы точечного заряда, движущегося с постоянной скоростью. Для практических целей нам нужно найти поля. Равномерно движущиеся заряды попадаются бук­вально на каждом шагу, скажем проходящие через камеру Вильсона космические лучи или даже медленно движущиеся электроны в проводнике. Так что давайте хотя бы посмотрим, как выглядят эти поля для любых скоростей заряда, даже для скоростей, близких к скорости света, но предположим при этом, что ускорение вообще отсутствует. Это очень интересный вопрос.

Поля мы будем находить по обычным правилам, исходя из потенциалов

Возьмем сначала E z Но компонента A z равна нулю а дифференцирование - фото 252

Возьмем сначала E z Но компонента A z равна нулю а дифференцирование - фото 253

Возьмем сначала E z :

Но компонента A z равна нулю, а дифференцирование выра­жения (26.1) для j дает

262 Аналогичная процедура для Е у приводит к 263 Немного больше работы - фото 254

(26.2)

Аналогичная процедура для Е у приводит к 263 Немного больше работы с - фото 255

Аналогичная процедура для Е у приводит к

(26.3)

Немного больше работы с x-компонентой. Производная от j более сложна, да и А х не равна нулю. Давайте сначала вычислим — д j /дх:

264 А затем продифференцируем А х по t 265 И наконец складывая их - фото 256

(26.4)

А затем продифференцируем А х по t 265 И наконец складывая их получаем - фото 257

А затем продифференцируем А х по t:

(26.5)

И, наконец, складывая их, получаем

266 Бросим на минуту заниматься полем Е а сначала найдем В Для его - фото 258

(26.6)

Бросим на минуту заниматься полем Е а сначала найдем В Для его zкомпоненты - фото 259

Бросим на минуту заниматься полем Е, а сначала найдем В. Для его z-компоненты мы имеем

Но, поскольку А y равна нулю, у нас остается только одна производная. Заметьте, однако, что А х просто равна vj, а производная (d/dy)v jравна — vE y . Так что

6a Электродинамика - изображение 260

(26.7)

Аналогично,

6a Электродинамика - изображение 261

6a Электродинамика - изображение 262

или

(26.8)

Наконец, компонента В х равна нулю, поскольку равны нулю и А у и А г . Таким образом, магнитное поле можно запи­сать в виде

6a Электродинамика - изображение 263

(26.9)

Теперь посмотрим как выглядят наши поля Мы попытаемся нарисовать картину поля - фото 264

Теперь посмотрим, как выглядят наши поля. Мы попытаемся нарисовать картину поля вокруг положения заряда в настоящий момент. Конечно, влияние заряда в каком-то смысле происхо­дит из запаздывающего положения, но, поскольку мы имеем дело со строго заданным движением, запаздывающее положение однозначно определяется положением в настоящий момент. При постоянной скорости заряда поля лучше связывать с теку­щими координатами, ибо компоненты поля в точке х, у, z за­висят только от (х-vt), у и z, которые являются компонентами вектора перемещения r p из постоянного положения заряда в точку (х, у, z) (фиг. 26.3).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




6a. Электродинамика отзывы


Отзывы читателей о книге 6a. Электродинамика, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x