Ричард Фейнман - 5a. Электричество и магнетизм

Тут можно читать онлайн Ричард Фейнман - 5a. Электричество и магнетизм - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    5a. Электричество и магнетизм
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 5a. Электричество и магнетизм краткое содержание

5a. Электричество и магнетизм - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

5a. Электричество и магнетизм - читать онлайн бесплатно полную версию (весь текст целиком)

5a. Электричество и магнетизм - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

723 Отсюда следует что s меняется по гармоническому закону Во времени s - фото 143

(7.23)

Отсюда следует, что s меняется по гармоническому закону. Во времени s меняется как cos wt или, если использовать экспоненту (см. вып. 3), как

5a Электричество и магнетизм - изображение 144

(7.24)

Частота колебаний w р определяется из (7.23):

5a Электричество и магнетизм - изображение 145

(7.25)

Это число, характеризующее плазму, называют собственной частотой колебаний плазмы, или плазменной частотой.

Оперируя с электронами, многие предпочитают получать ответы в единицах e 2 , определяемых как

5a Электричество и магнетизм - изображение 146

(7.26)

При этом условии (7.25) превращается в

5a Электричество и магнетизм - изображение 147

(7.27)

В таком виде эту формулу можно встретить во многих книгах.

Итак, мы обнаружили, что возмущения плазмы приводят к свободным колебаниям электронов вблизи положения равновесия с собственной частотой w р , пропорциональной корню квад­ратному из плотности электронов. Плазменные электроны ве­дут себя как резонансная система, подобная описанным в вып. 2, гл. 23.

Этот собственный резонанс плазмы приводит к интересным эффектам. Например, при прохождении радиоволн сквозь ионо­сферу обнаруживается, что они могут пройти только в том слу­чае, если их частота выше плазменной частоты. А иначе они от­ражаются обратно. Для связи с искусственным спутником мы используем высокие частоты. Если же мы хотим связаться с ра­диостанцией, расположенной где-то за горизонтом, то необхо­димы частоты меньшие, чем плазменная частота, иначе сигнал не отразится обратно к Земле.

Другой интересный пример колебаний плазмы наблюдается в металлах. В них содержится плазма из положительных ионов и свободных электронов. Плотность n 0 там очень высока, зна­чит, велика и w р . Но колебания электронов все же можно обна­ружить. Ведь, согласно квантовой механике, гармонический осциллятор с собственной частотой w р обладает уровнями энер­гии, отличающимися друг от друга на величину h w р. Значит, если, скажем, обстреливать электронами алюминиевую фольгу и очень точно измерять их энергию по ту сторону фольги, то можно ожидать, что временами электроны будут из-за колеба­ний плазмы терять как раз энергию hw p . Так это и происходит. Впервые это явление наблюдалось экспериментально в 1936 г. Электроны с энергиями от нескольких сот до несколь­ких тысяч электронвольт, рассеиваясь от тонкой металлической фольги или проходя сквозь нее, теряли энергию порциями. Эффект оставался непонятым до 1953 г., пока Бом и Пайнс не показали, что все это можно объяснить квантовым возбужде­нием плазмы в металле.

§ 4. Коллоидные частицы в электролите

Обратимся к другому явлению, когда местоположение заря­дов определяется потенциалом, создаваемым в какой-то степени самими зарядами. Такой эффект существен для поведения коллоидов. Коллоид — это взвесь маленьких заряженных час­тичек в воде. Хотя эти частички и микроскопические, но по сравнению с атомом они все же очень велики. Если бы коллоид­ные частицы не были заряжены, они бы стремились коагулиро­вать (слиться) в большие комки; но, будучи заряженными, они отталкиваются друг от друга и остаются во взвешенном состоя­нии. Если в воде растворена еще соль, то она диссоциирует (расползается) на положительные и отрицательные ионы. (Та­кой раствор ионов называется электролитом.) Отрицательные ионы притягиваются к коллоидным частицам (будем считать, что их заряды положительны), а положительные — отталки­ваются. Нам нужно узнать, как ионы, окружающие каждую частицу коллоида, распределены в пространстве.

Чтобы мысль была яснее, рассмотрим только одномерный случай. Представим себе коллоидную частицу в виде очень боль­шого (по сравнению с атомом!) шара; тогда мы можем малую часть ее поверхности считать плоскостью. (Вообще, пытаясь понять новое явление, лучше разобраться в нем на чрезвычайно упрощенной модели; и только потом, поняв суть проблемы, стоит браться за более точные расчеты.)

Предположим, что распределение ионов создает плотность за­рядов р(х) и электрический потенциал j, связанные электро­статическим законом С 2j =-r/e 0, или в одномерном случае законом

5a Электричество и магнетизм - изображение 148

(7.28)

Как бы распределились ионы в таком поле, если бы потен­циал подчинялся этому уравнению? Узнать это можно при помощи принципов статистической механики. Вопрос в том, как определить j, чтобы вытекающая из статистической меха­ники плотность заряда тоже удовлетворяла бы условию (7.28)?

Согласно статистической механике (см. вып. 4, гл. 40), час­тицы, пребывая в тепловом равновесии в поле сил, распределя­ются так, что плотность n частиц с координатой x дается фор­мулой

5a Электричество и магнетизм - изображение 149

(7.29)

где U(x) — потенциальная энергия, k — постоянная Больцмана, а Т — абсолютная температура.

5a Электричество и магнетизм - изображение 150

Предположим, что у всех ионов один и тот же электрический заряд, положительный или отрицательный. На расстоянии х от поверхности коллоидной частицы положительный ион будет обладать потенциальной энергией

Плотность положительных ионов тогда равна

5a Электричество и магнетизм - изображение 151

5a Электричество и магнетизм - изображение 152

а плотность отрицательных

5a Электричество и магнетизм - изображение 153

Суммарная плотность заряда

или 730 Подставляя в 728 увидим что потенциал j должен удовлетворять - фото 154

или

(7.30)

Подставляя в (7.28), увидим, что потенциал j должен удов­летворять уравнению

731 Это уравнение решается в общем виде помножьте обе его части на - фото 155

(7.31)

Это уравнение решается в общем виде [помножьте обе его части на 2(dj/dx)и проинтегрируйте по х],но, продолжая упрощать задачу, мы ограничимся здесь только предельным случаем малых потенциалов или высоких температур Т. Малость j отвечает разбавленному раствору. Показатель экспоненты тогда мал, и можно взять

732 Уравнение 731 дает 733 Заметьте что теперь в правой части - фото 156

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




5a. Электричество и магнетизм отзывы


Отзывы читателей о книге 5a. Электричество и магнетизм, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x