Ричард Фейнман - 5a. Электричество и магнетизм

Тут можно читать онлайн Ричард Фейнман - 5a. Электричество и магнетизм - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    5a. Электричество и магнетизм
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 5a. Электричество и магнетизм краткое содержание

5a. Электричество и магнетизм - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

5a. Электричество и магнетизм - читать онлайн бесплатно полную версию (весь текст целиком)

5a. Электричество и магнетизм - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(7.32)

Уравнение 731 дает 733 Заметьте что теперь в правой части стоит знак - фото 157

Уравнение (7.31) дает

(7.33)

Заметьте, что теперь в правой части стоит знак плюс (ре­шение не колебательное, а экспоненциальное).

Фиг 77 Изменение потенциала у поверхности коллоидной частицы D - фото 158

Фиг. 7.7. Изменение по­тенциала у поверхности коллоидной частицы. D — дебаевская длина.

Общее решение (7.33) имеет вид

5a Электричество и магнетизм - изображение 159

(7.34)

где

5a Электричество и магнетизм - изображение 160

(7.35)

Постоянные А и В определяются из добавочных условий. В на­шем случае В должно быть нулем, иначе потенциал для боль­ших х обратится в бесконечность. Итак,

5a Электричество и магнетизм - изображение 161

(7.36)

где А — потенциал при x=0 на поверхности коллоидной час­тицы.

Потенциал убывает в e раз при удалении на D (фиг. 7.7). Число D называется дебаевской длиной; это мера толщины ион­ной оболочки, окружающей в электролите каждую большую за­ряженную частицу. Уравнение (7.36) утверждает, что оболочка становится тоньше по мере увеличения концентрации ионов (n 0) или уменьшения температуры.

Постоянную А в 736 легко получить если известен поверхностный заряд а на - фото 162

Постоянную А в (7.36) легко получить, если известен поверх­ностный заряд а на поверхности заряженной частицы. Мы знаем, что

(7.37)

5a Электричество и магнетизм - изображение 163

Но Е это также градиент j

(7.38)

откуда получается

5a Электричество и магнетизм - изображение 164

(7.39)

5a Электричество и магнетизм - изображение 165

Подставив этот результат в (7.36), мы получим (положив х=0), что потенциал коллоидной частицы равен

(7.40)

Заметьте, что этот потенциал совпадает с разностью потенциалов в конденсаторе с промежутком D и поверхностной плотностью заряда s .

Мы сказали, что коллоидные частицы не слипаются вслед­ствие электрического отталкивания. Но теперь мы видим, что невдалеке от поверхности частицы из-за возникающей вокруг нее ионной оболочки поле спадает. Если бы оболочка стала до­статочно тонкой, у частиц появился бы шанс столкнуться друг с другом. Тогда они бы слиплись, коллоид бы осадился и выпал из жидкости. Из нашего анализа ясно, что после добавления в коллоид подходящего количества соли начнется выпадение осадка. Этот процесс называется «высаливанием коллоида».

Другой интересный пример — это влияние растворения соли На осаждение белка. Молекула белка — это длинная, слож­ная и гибкая цепь аминокислот. На ней там и сям имеются за­ряды, и временами заряд какого-то одного знака, скажем отри­цательного, распределяется вдоль всей цепи. В результате вза­имного отталкивания отрицательных зарядов белковая цепь распрямляется. Если в растворе имеются еще другие такие же молекулы-цепочки, то они не слипаются между собой вследст­вие того же отталкивания. Так возникает в жидкости взвесь молекул-цепочек. Но стоит добавить туда соли, как свойства взвеси изменятся. Уменьшится дебаевская длина, молекулы начнут сближаться и свертываться в спирали. А если соли мно­го, то молекулы белка начнут выпадать в осадок. Существует множество других химических явлений, которые можно понять на основе анализа электрических сил.

§ 5. Электростатическое поле сетки

Напоследок мы хотим изложить еще одно интересное свой­ство электрических полей. Оно используется в электрических приборах, электронных лампах и для других целей. Речь идет о поведении электрического поля близ сетки, составленной из заряженных проволочек. Чтоб упростить задачу, возьмем плос­кую систему параллельных проволочек бесконечной длины, про­межутки между которыми одинаковы.

Если мы посмотрим на поле где-то высоко над плоскостью проволочек, перед нами предстанет однородное электрическое поле, такое, словно заряд распределен на плоскости равномер­но. По мере приближения к сетке начнутся отклонения от преж­ней однородности. Мы хотим оценить, насколько близко от сетки появятся заметные изменения в потенциале.

Фиг 78 Эквипотенциальные поверхности над однородной сеткой из заряженных - фото 166

Фиг. 7.8. Эквипотен­циальные поверхности над однородной сеткой из заряженных прово­лочек.

На фиг. 7.8 показа­но примерное расположение эквипотенциальных поверхностей на разных расстояниях от сетки. Чем ближе к сетке, тем сильнее колебания. Двигаясь параллельно сетке, мы заметим, что поле изменяется периодически.

Мы уже знаем (см. вып. 4, гл. 50), что любая периодическая величина может быть представлена в виде суммы синусных волн (теорема Фурье). Посмотрим, нельзя ли найти подходящую коле­бательную функцию, которая удовлетворяет нашим уравнениям поля.

Если проволочки лежат в плоскости ху параллельно оси y, то можно попробовать испытать члены вида

(7.41)

5a Электричество и магнетизм - изображение 167

где а — расстояние между нитями, а n число колебаний. (Мы предположили, что нити эти очень длинные, так что ника­ких изменений по у не заметно.) Полное решение должно со­стоять из суммы таких членов при n=1, 2, 3... Чтоб получился правильный потенциал, оно должно в области над сеткой (где зарядов нет) подчиняться уравнению Лапласа, т. е.

Испытывая этим уравнением функцию j из (7.41), мы получаем

5a Электричество и магнетизм - изображение 168

(7.42)

т.е. F n(z) должно удовлетворять условию

5a Электричество и магнетизм - изображение 169

(7.43)

5a Электричество и магнетизм - изображение 170

Итак, должно быть

(7.44)

5a Электричество и магнетизм - изображение 171

(7.45)

Мы обнаружили, что если имеется компонента Фурье n гар­моники поля, то эта компонента должна убывать по экспоненте с высотой, причем характерным расстоянием является z 0 =a/2pn. Амплитуда у первой гармоники (n=1) уменьшается в е 2 p раз (очень резкое падение) каждый раз, когда мы удаляемся от сетки на величину одного промежутка а. Другие гармоники убы­вают еще быстрее. Мы видим, что уже на расстоянии в несколько а сетка кажется почти однородной, т. е. колебания поля очень малы. Конечно, всегда остается «нулевая гармоника» поля

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




5a. Электричество и магнетизм отзывы


Отзывы читателей о книге 5a. Электричество и магнетизм, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x