Ричард Фейнман - 4a. Кинетика. Теплота. Звук
- Название:4a. Кинетика. Теплота. Звук
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 4a. Кинетика. Теплота. Звук краткое содержание
4a. Кинетика. Теплота. Звук - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
здесь с — скорость того, что мы назвали волнами. Если речь идет о звуке, то это скорость звука, если о свете — то это скорость света. Мы показали, что для звуковой волны перемещения частиц должны распространяться с некоторой скоростью. Но избыточное давление, как и избыточная плотность, тоже распространяется с некоторой скоростью. Таким образом, можно ожидать, что и давление будет удовлетворять этому же уравнению.
Так оно и есть на самом деле, однако докажите это самостоятельно. Указание: r u пропорционально скорости изменения c с расстоянием х. Следовательно, продифференцировав волновое уравнение по х, мы немедленно обнаружим, что д c /дх удовлетворяет тому же самому уравнению. Другими словами, r uудовлетворяет тому же самому уравнению. Но Р u пропорционально r u, поэтому и Р u удовлетворяет тому же самому уравнению. Таким образом, и давление, и перемещение — все описывается одним и тем же уравнением.
Обычно волновое уравнение для звука записывается через давление, а не через перемещение. Это проще, потому что давление — скаляр и не имеет никакого направления. Но перемещение есть вектор, и поэтому лучше иметь дело с давлением.
Следующий вопрос, который нам предстоит обсудить, относится к волновому уравнению в трехмерном пространстве. Мы знаем, что звуковая волна в одномерном пространстве описывается решением ехр[i(wt- kx)], где w=kc S. Кроме того, нам известно, что в трех измерениях волна описывается выражением exp[i(wt- k x x-k y y-k z z)], и в этом случае w 2=k 2с S 2[сокращенная запись (k 2 x+k 2 y+k 2 z)c 2 S]. Сейчас мы хотим просто угадать вид волнового уравнения в трехмерном пространстве. Естественно, что в случае звука это уравнение можно получить с помощью тех же самых динамических соображений, но уже в трехмерном пространстве. Однако мы не будем сейчас делать этого, а просто напишем ответ: уравнение для давления или перемещения (или чего-то другого) имеет вид
правильность этого уравнения может быть легко проверена подстановкой в него функции exp[i(wt- k· r)]. Ясно, что при каждом дифференцировании по х происходит умножение на - ik x . Если мы дифференцируем дважды, то это эквивалентно умножению на - k 2 x , так что для такой волны первый член получится равным - k 2 x P u . Точно таким же образом второй член окажется равным -k 2 у Р u , а третий — равным - k 2 z P u . С правой же стороны мы получим -w 2/c 2 SР u. Если мы вынесем 1 за скобку Р и и изменим знаки всех членов, то увидим, что между k и w как раз получится желаемое соотношение.
Возвращаясь назад, мы должны прийти к основному уравнению, соответствующему дисперсионному соотношению (48.22) для квантовомеханической волны. Если j — амплитуда нахождения частицы в момент t в точке с координатами х, у и z, то основное уравнение квантовой механики для свободной частицы имеет вид
Прежде всего заметим, что релятивистский характер этого уравнения гарантируется появлением координат x, y, z и времени t в такой удачной комбинации, что она автоматически учитывает принцип относительности. Кроме того, это уравнение волновое. Если подставить в него плоскую волну, то как следствие мы получим равенство -k 2+w 2/c 2=m 2c 2/h 2, которое должно выполняться в квантовой механике. В этом волновом уравнении содержится еще одна фундаментальная вещь: любая суперпозиция волн также будет его решением. Таким образом, это уравнение опирается на всю квантовую механику и всю теорию относительности, которая уже обсуждалась нами до сих пор, по крайней мере когда мы имели дело с единственной частицей в пустом пространстве без всяких потенциалов и воздействующих на нее сил!
§ 7. Собственные колебания
Вернемся теперь к другим очень любопытным примерам биений, которые немного отличаются от того, что мы рассматривали до сих пор. Представьте себе два одинаковых маятника, которые связаны между собой слабой пружинкой. Длины их должны быть одинаковыми с возможно большей точностью. Если мы оттянем один маятник и отпустим его, то он будет качаться взад и вперед и будет тянуть то взад, то вперед связывающую пружинку, т. е. получится устройство, создающее силу с собственной частотой второго маятника. Можно заключить из знакомой нам теории резонансов, что если к какому-то предмету прикладывать с надлежащей частотой силу, то она будет двигать этот предмет. Таким образом, ясно, что один маятник, двигаясь взад и вперед, будет раскачивать второй. Однако при этих условиях происходит некое новое явление, связанное с тем, что энергия системы конечна. Первый маятник постепенно растрачивает свою энергию, вызывая движение другого маятника, и в конце концов полностью отдаст свою энергию и остановится. Вся энергия теперь будет сосредоточена во втором маятнике. Но пройдет немного времени и все будет происходить наоборот: энергия из второго маятника будет перекачиваться назад, в первый маятник. Это очень интересное и занимательное явление. Мы сказали, что оно связано с теорией биений, и сейчас мы должны показать, как можно понять это явление с точки зрения этой теории.
Обратите внимание, что движение каждого из двух маятников — это колебания с циклически изменяющейся амплитудой. Поэтому движение одного из маятников можно, очевидно, рассматривать с различных точек зрения, в частности как сумму двух одновременных колебаний с мало отличающимися частотами. Таким образом должно быть возможно обнаружить в этой системе два других движения и утверждать, что поскольку система наша, безусловно, линейная, то мы видим суперпозицию этих двух решений. Действительно, легко найти два способа так запустить нашу систему, что каждый из них даст в результате идеальное абсолютно периодическое колебание с одной частотой. Движение, с которого мы начали, не строго периодично, оно не продолжается все время (один маятник постепенно передает свою энергию другому и изменяет свою амплитуду), но есть способы так начать движение, что не будет никаких подобных изменений. Как только вы узнаете, что это за способы, то сразу же поймете почему. Если, например, мы запустим оба маятника одновременно, то, поскольку длина их одинакова и пружинка в этом случае бездействует, оба маятника так и будут продолжать качаться все время вместе. (Разумеется, если нет трения и все достаточно хорошо подогнано.) С другой стороны, существует еще одна возможность создать строго периодическое движение, которое также имеет определенную частоту,— когда маятники, оттянутые вначале в разные стороны на точно равные расстояния, движутся в противоположных направлениях. Нетрудно сообразить, что пружинка немного увеличивает «восстанавливающую силу», возникающую из-за действия силы тяжести, и система колеблется с несколько большей частотой, чем в первом случае,— вот и все. Почему с большей? Да потому что пружинка тянет, помогая силе тяжести, и это делает систему более «жесткой», так что частота такого колебания чуть-чуть больше.
Читать дальшеИнтервал:
Закладка: