Ричард Фейнман - 3. Излучение. Волны. Кванты

Тут можно читать онлайн Ричард Фейнман - 3. Излучение. Волны. Кванты - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    3. Излучение. Волны. Кванты
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 3. Излучение. Волны. Кванты краткое содержание

3. Излучение. Волны. Кванты - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

3. Излучение. Волны. Кванты - читать онлайн бесплатно полную версию (весь текст целиком)

3. Излучение. Волны. Кванты - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Нас конечно интересует именно случай имеющий физический смысл поэтому мы - фото 103

Нас конечно интересует именно случай имеющий физический смысл поэтому мы - фото 104

Нас, конечно, интересует именно случай, имеющий физи­ческий смысл, поэтому мы положим е - i Ґ равным нулю. Возвраща­ясь к формуле (30.12) для поля и вводя все опущенные ранее множители, мы получаем

(30.18)

(помня, что l/i =-i).

Интересно отметить что iwx 0 e i w t в точности равно скорости зарядов так - фото 105

Интересно отметить, что iwx 0 e i w t в точности равно скорости зарядов, так что выражения для поля можно переписать в виде

Этот результат немного странен, потому что запаздывание отве­чает расстоянию z, которое есть кратчайшее расстояние от Р до плоскости. Но таков ответ, и, к счастью, формула довольно проста. [Добавим кстати, что, хотя формулы (30.18) и (30.19) бы­ли получены только для достаточно большого расстояния от плоскости, обе они оказываются правильными для любых z,

даже для z

*В нашем случае T=D/с=mnl,/с, где с — скорость света. Частота v=c/l, так что dv=cdl/l 2 .

*Прежде всего потому, что сам критерий Рэлея приближенный. Он только указывает область углов, где трудно разобрать, сколько звезд на изображении — одна или две. А в действительности, если точно измерить распределение интенсивности, можно различить два источника при углах q, даже меньших l/L.

Глава 31

КАК ВОЗНИКАЕТ ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ

§ 1. Показатель преломления

§ 2. Поле, излучае­мое средой

§ 3. Дисперсия

§ 4. Поглощение

§ 5. Энергия световой волны

§ 6. Дифракция света на непрозрачном экране

§ 1. Показатель преломления

Мы уже говорили, что свет в воде движется медленнее, чем в воздухе, а в воздухе чуть мед­леннее, чем в вакууме. Этот факт учитывается введением показателя преломления п. Попро­буем теперь понять, как возникает уменьшение скорости света. В частности, особенно важно проследить связь этого факта с некоторыми физическими предположениями или законами, которые были ранее высказаны и сводятся к следующему:

а) полное электрическое поле при любых физических условиях может быть пред­ставлено в виде суммы полей от всех зарядов во Вселенной;

б) поле излучения каждого отдельного за­ряда определяется его ускорением; уско­рение берется с учетом запаздывания, возникающего из-за конечной скорости распространения, всегда равной c. Но вы, наверное, приведете сразу в каче­стве примера кусок стекла и воскликнете: «Ерунда, это положение здесь не годится. Нужно говорить, что запаздывание отвечает скорости c/n». Однако это неправильно; по­пробуем разобраться, почему это неправильно. Наблюдателю кажется, что свет или любая другая электрическая волна распространяется сквозь вещество с показателем преломления n со скоростью с/n. И это с некоторой точностью так и есть. Но на самом деле поле создается движением всех зарядов, включая и заряды, движущиеся в среде, а все составные части поля, все его слагаемые распространяются с максимальной скоростью c. Задача наша со­стоит в том, чтобы понять, как возникает кажущаяся меньшая скорость.

Фиг 311 Прохождение электрических волн сквозь слой прозрачного вещества - фото 106

Фиг. 31.1. Прохождение электрических волн сквозь слой прозрачного вещества.

Попробуем понять это явление на очень простом примере. Пусть источник (назовем его «внешним источником») помещен на большом расстоянии от тонкой прозрачной пластинки, ска­жем стеклянной. Нас интересует поле по другую сторону пла­стинки и достаточно далеко от нее. Все это схематично представ­лено на фиг. 31.1; точки S и Р здесь предполагаются удаленными на большое расстояние от плоскости. Согласно сформулирован­ным нами принципам, электрическое поле вдали от пластинки представляется (векторной) суммой полей внешнего источника (в точке S) и полей всех зарядов в стеклянной пластинке, причем каждое поле берется с запаздыванием при скорости с. Напомним, что поле каждого заряда не меняется от присутствия других зарядов. Это наши основные принципы. Таким образом, поле в точке Р

может быть записано в виде 311 312 где E s поле внешнего источника - фото 107

может быть записано в виде

(31.1)

312 где E s поле внешнего источника оно совпадало бы с искомым полем в - фото 108

(31.2)

где E s— поле внешнего источника; оно совпадало бы с иско­мым полем в точке Р, если бы не было пластинки. Мы ожидаем, что в присутствии любых движущихся зарядов поле в точке Р будет отлично от E r

Откуда берутся движущиеся заряды в стекле? Известно, что любой предмет состоит из атомов, содержащих электроны. Электрическое поле внешнего источника действует на эти атомы и раскачивает электроны взад и вперед. Электроны в свою оче­редь создают поле; их можно рассматривать как новые излуча­тели. Новые излучатели связаны с источником S, поскольку именно поле источника заставляет их колебаться. Полное поле содержит вклад не только от источника S, но и дополнительные вклады от излучения всех движущихся зарядов. Это значит, что поле в присутствии стекла изменяется, причем таким образом, что внутри стекла его скорость распространения кажется иной. Именно эту идею мы используем при количественном рассмот­рении.

Однако точный расчет очень сложен, потому что наше утверж­дение, что заряды испытывают только действие источника, не совсем правильно. Каждый данный заряд «чувствует» не только источник, но, подобно любому объекту во Вселенной, он чув­ствует и все остальные движущиеся заряды, в частности и заря­ды, колеблющиеся в стекле. Поэтому полное поле, действующее на данный заряд, представляет собой совокупность полей от всех остальных зарядов, движение которых в свою очередь зависит от движения данного заряда! Вы видите, что вывод точной фор­мулы требует решения сложной системы уравнений. Эта система очень сложна, и вы будете изучать ее значительно позднее.

А сейчас обратимся к совсем простому примеру, чтобы отчет­ливо понять проявление всех физических принципов. Предпо­ложим, что действие всех остальных атомов на данный атом мало по сравнению с действием источника. Иными словами, мы изучаем такую среду, в которой полное поле мало меняется из-за движения находящихся в ней зарядов. Такая ситуация ха­рактерна для материалов с показателем преломления, очень близким к единице, например для разреженных сред. Наши формулы будут справедливы для всех материалов с показателем преломления, близким к единице. Таким путем мы сможем из­бежать трудностей, связанных с решением полной системы урав­нений.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




3. Излучение. Волны. Кванты отзывы


Отзывы читателей о книге 3. Излучение. Волны. Кванты, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x