Александр Волошинов - Математика и искусство

Тут можно читать онлайн Александр Волошинов - Математика и искусство - бесплатно полную версию книги (целиком) без сокращений. Жанр: Детская образовательная литература, издательство Просвещение, год 1992. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Александр Волошинов - Математика и искусство краткое содержание

Математика и искусство - описание и краткое содержание, автор Александр Волошинов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В книге на обширном материале от античных времен до наших дней прослеживаются пути взаимодействия и взаимообогащения двух великих сфер человеческой культуры — науки и искусства, развивается стержневая идея книги — идея единства науки и искусства, единства истины и красоты. Рассматривая 'математические начала' формообразования в музыке, архитектуре и живописи, автор показывает, что глубинные, фундаментальные закономерности, присущие этим видам искусства, находят адекватное выражение на языке математики. Книга написана ярко, увлекательно и доступно, богато иллюстрирована в цвете и рассчитана на самые широкие круги читателей.

Математика и искусство - читать онлайн бесплатно полную версию (весь текст целиком)

Математика и искусство - читать книгу онлайн бесплатно, автор Александр Волошинов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Итак, "склейка" левой и правой аксонометрий являлась источником сильной обратной перспективы.

Необходимо отметить многообразие и разнородность источников обратной перспективы, среди которых есть и причины, никак не связанные с геометрией живописи. Тем не менее, действуя в совокупности, они привели к возникновению нового своеобразного стиля, в котором обратная перспектива стала геометрической основой.

Заметим, что обратная перспектива так и не стала единой геометрической системой древнерусской живописи, подобно линейной перспективе в живописи эпохи Возрождения. Но эта геометрическая непоследовательность придает древнерусской живописи удивительную открытость и очарование, мудрое отрешение от мелочной суетности, некую неопределенность и недосказанность, которые так свойственны истинным произведениям искусства.

Расставаясь с древнерусским искусством, вернемся еще раз к его шедевру, к тому, что "недосказал" Рублев и о чем веками продолжают "догадываться" его наследники. Предоставим слово Б. Раушенбаху: "Не изобразив боковых сторон престола, Рублев сознательно оставил поставленный вопрос без ответа. Представляется правдоподобным, что отмечавшаяся всеми исследователями творчества великого русского художника многогранность содержания "Троицы" требовала и "многогранной", т. е. не до конца определенной, геометрии изображения, чтобы эта геометрия "жила" и "изменялась", поворачиваясь то одной, то другой своей гранью, как и вложенные в "Троицу" идеи".

Но на древнерусском искусстве увлечение Раушенбаха живописью, точнее математикой живописи, не закончилось. Не только древние черные доски, но и яркие полотна мастеров XIX и XX веков таили в себе немало геометрических загадок. В какой перспективе творили Сезанн и Ван Гог, Поленов и Верещагин, Серов и Бенуа? Пока ясно было только одно: отнюдь не в ренессансной. Но тогда в какой? И снова вопросы, вопросы, вопросы.

Из этих вопросов и родилась общая теория перспективы. Новая теория учитывала не только законы геометрической оптики, по которым видит глаз, но и закономерности работы мозга при зрительном восприятии. Последние закономерности невозможно выразить на языке геометрии с помощью проектирования прямыми или искривленными лучами зрения, поэтому новая теория перспективы носит аналитический характер.

Переход к аналитическим методам математического описания вообще отражает процесс более глубокого проникновения математики в ту или иную область знания. В данном случае этот переход означает качественно новое математичекое описание механизма зрительного восприятия. В отличие от ренессансной системы в общей теории перспективы образа точки трехмерного пространства на картинной плоскости находится не путем геометрических построений, а путем вычислений.

Конечно, геометрические построена для художника более удобны и вряд ли найдется художник, который будет расчитывать пространство своей картин! Но теория и создавалась не для этог Новая теория позволила решить задач принципиально недоступную для рене сансной: количественно оценить отклонние полученного изображения от естесвенного зрительного восприятия и на основании этих количественных оценс дать качественное заключение о xapaктере допускаемых искажений (уточнит где преобладают ошибки: в передаче мен штаба изображения, либо в передаче глубины пространства, либо в подобии избражения). А уже на основании эти качественных оценок можно дать прость и удобные геометрические приемы пстроения перспективных изображений.

Мы не будем в самом конце книг утомлять читателя математическими выкладками общей теории перспективы которые к тому же отнюдь не элементарны и требуют знания дифференциального и интегрального исчисления. Остановимся на выводах и геометрически следствиях, которые вытекают из это теории.

Общая теория перспективы — это тория перцептивного изображения, в основе которой лежат обсуждавшиеся свойства перцептивного пространства. Системы перспективы, построенные на базе oбщей теории перспективы, будем назвать научными системами перспективы. Главный вывод, к которому приходит Б. В. Раушенбах, таков: не существует идеальной научной системы перспективы. Существует бесчисленное множество равноправных систем перспективы, каждая из которых содержит свои неизбежные ошибки изображения. Все системы отличаются друг от друга тем, на какие элементы изображения смещены эти ошибки, что и может в зависимости от художественных задач служить критерием выбора той или иной системы перспективы.

Этот вывод является частным случаем более общего математического факта: невозможно взаимнооднозначно и непрерывно отобразить трехмерное пространство на двумерную плоскость. Хотя на первый взгляд это кажется и странным, но взаимнооднозначное отображение пространства на плоскость возможно. Образно говоря, можно "истолочь" пространство на бесконечно малые точки и рассыпать эти точки бесконечно тонким слоем нa. плоскости. Однако при этом безвозвратно нарушается строение пространства, близкие элементы пространства не перейдут в близкие элементы плоскости, т. е. отображение не будет непрерывным. Разумеется, подобные отображения для изобразительных целей неприемлемы, ибo изобразительное искусство прежде всегo интересует именно форма. Рассмотренные нами способы проецирования пространства на плоскость (ортогональные проекции, аксонометрия, центральные проекции), равно как и научные системы перспективы, являются своеобразным компромиссом между взаимнооднозначностью и непрерывностью отображения пространства на плоскость. Аналогичное противоречие между "содержанием" (взаимнооднозначность) и "формой" (непрерывность) отображения приходится разрешать, например, в картографии при отображении сферы Земли на плоскость карты. Эта задача также не имеет "идеального" решения.

Проанализировав различные варианты научных систем перспективы, Раушенбах пришел к своеобразному "закону сохранения искажений в изобразительном искусстве". Суть этого закона, который наиболее ярко проявляется при изображении интерьера, т. е. не слишком протяженного пространства, заключается в том, что суммарная ошибка при передаче изображения для любой системы перспективы оказывается практически одной и той же. До обнаружения этого неожиданного факта казалось, что научная система перспективы должна носить абсолютный характер, так как она исходит из объективных законов природы (законов работы глаза и мозга). А оказалось, что научных систем перспективы сколь угодно много и все они с точки зрения математики (по суммарной ошибке искажений) равноценны. Поэтому проблема выбора подходящего варианта научной перспективы становится проблемой эстетической. Вот что по этому поводу пишет Раушенбах: "Эстетика "вторглась", казалось бы, в строго математическую область с неожиданной стороны... Именно эстетические соображения отбирают из бесчисленного множества предлагаемых математических вариантов тот, который является наиболее подходящим для решаемой художественной задачи".

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Волошинов читать все книги автора по порядку

Александр Волошинов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика и искусство отзывы


Отзывы читателей о книге Математика и искусство, автор: Александр Волошинов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x