Александр Волошинов - Математика и искусство

Тут можно читать онлайн Александр Волошинов - Математика и искусство - бесплатно полную версию книги (целиком) без сокращений. Жанр: Детская образовательная литература, издательство Просвещение, год 1992. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Александр Волошинов - Математика и искусство краткое содержание

Математика и искусство - описание и краткое содержание, автор Александр Волошинов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В книге на обширном материале от античных времен до наших дней прослеживаются пути взаимодействия и взаимообогащения двух великих сфер человеческой культуры — науки и искусства, развивается стержневая идея книги — идея единства науки и искусства, единства истины и красоты. Рассматривая 'математические начала' формообразования в музыке, архитектуре и живописи, автор показывает, что глубинные, фундаментальные закономерности, присущие этим видам искусства, находят адекватное выражение на языке математики. Книга написана ярко, увлекательно и доступно, богато иллюстрирована в цвете и рассчитана на самые широкие круги читателей.

Математика и искусство - читать онлайн бесплатно полную версию (весь текст целиком)

Математика и искусство - читать книгу онлайн бесплатно, автор Александр Волошинов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Эти два примера убеждают в том, что художники прежде всего предпочитают те варианты научной перспективы, которым свойственна правильная передача глубины пространства. Но это и понятно, ибо именно здесь решается извечный парадокс живописи: убедительно изобразить трехмерное пространство мира (а значит, прежде всего показать глубину пространства) на двумерной плоскости картины.

Еще раз отметим, что с позиций общей теории перспективы с помощью математического анализа ошибок изображения удалось строго указать границы применимости таких двух систем перспективы, как аксонометрия и слабая обратная перспектива. Эти две системы при определенных условиях (см. с. 318) являются совершенно естественными и равноправными вариантами научной системы перспективы. Аксонометрия и слабая обратная перспектива являются хорошими способами передачи формы и объема отдельного предмета, а не целостного пространства. При этом аксонометрия является счастливым исключением, абсолютно безошибочно передающим близкие и не слишком протяженные объекты. Так, в рамках общей теории перспективы обрели свое место аксонометрия и обратная перспектива, не имевшие прежде теоретического фундамента, но сыгравшие выдающуюся роль в истории искусства (см. гл. 22).

В Поленов Церковь Св Елены 1882 Перспективный анализ Б В Раушенбаха - фото 627

В. Поленов. Церковь Св. Елены. 1882. Перспективный анализ Б. В. Раушенбаха

Книга Б. В. Раушенбаха "Системы перспективы в изобразительном искусстве. Общая теория перспективы" вышла в свет в 1986 г. До этой книги в течение почти 500 лет не появлялось фундаментальных трудов по перспективе! Проблема перспективы казалась решенной раз и навсегда еще в XV веке! И вот в конце XX века появляется труд, автор которого исходит из того, что не было известно науке XV века — математического анализа, дифференциальных уравнений, геометрии Лобачевского — и что так и осталось недоступным искусствоведам века XX. Только человек, соединяющий в одном лице глубокое знание математики с тонким чувством прекрасного, мог сделать это открытие!

Спираль науки сделала гигантский виток длиной в 500 лет и на качественно новом уровне решила, казалось бы, старую, как мир, задачу. Но вряд ли стоит думать, что все точки над i в теории перспективы расставлены окончательно. Пути науки, как и пути искусства, не имеют "точек схода", они простираются в бесконечность.

Заключение

То, что я понял — превосходно. Думаю, таково же и то, чего я не понял.

Сократ

Только кончая задуманное сочинение, мы уясняем себе, с чего нам следовало его начать.

Б. Паскаль

Книга закончена. Но именно поэтому хочется вернуться к ее началу, ибо, как сказал один мудрец задолго до Паскаля, "идет ветер к югу и переходит к северу, кружится, кружится на ходу своем, и возвращается ветер на круги свои". Поэтому, подойдя к заключению, хочется вернуться к началу книги, к мудрому древнему знаку Ин-Ян.

Возможно, кому-то могло показаться, что автор предпринял попытку навести "математический" порядок в искусстве, а то и вовсе "математизировать" искусство, как это происходит сегодня со многими науками. Нет и еще раз нет! Автор полностью солидарен с замечательным русским поэтом Аполлоном Майковым, который писал:

Гармонии стиха божественные тайны
Не думай разгадать по книгам мудрецов:
У брега сонных вод, один бродя, случайно,
Прислушайся душой к шептанью тростников...

Искусство — самостоятельная форма познания реальной действительности, оно живет своей жизнью, оно соткано из хитросплетения диалектически противоположных начал — материального и духовного, рационального и иррационального, объективного и субъективного, логичного и алогичного, сконструированного и сотворенного, рассчитанного и угаданного... Ни в науке, ни в технике нет подобного переплетения противоположностей. Поэтому в той своей части, которая описывается первыми прилагательными, искусство доступно точному и прежде всего математическому анализу. А в части, описываемой вторыми прилагательными, искусство неподвластно математике, да и не нужно разрушать эту волшебную часть искусства логикой. К этой части искусства необходимо "прислушаться душой".

Вот почему словосочетание, стоящее в заголовке книги — "Математика и искусство", на протяжении столетий вызывает диаметрально противоположные суждения. Приведем только два и только служителей муз. Английский художник У. Хогарт писал о сущности художественного метода: "Все математические представления следует совершенно устранить из нашего метода, потому что они для него не имеют никакого смысла". А вот французский скульптор Антуан Бурдель (1861-1929) считал: "Искусство — это завуалированная алгебра, отнимающая жизнь у тех, кто стремится приподнять ее покрывало".

Однако автору импонирует третье мнение, отражающее глубокое понимание диалектики искусства, мнение, которое высказал в дискуссии ученых и художников профессор М. Каган: "... невозможно проверить алгеброй гармонию и невозможно проверить — т. е. познать — гармонию без алгебры". Именно такой взгляд на математику и искусство символизирует древнекитайский знак гармонии Ин-Ян.

Искусство — это не только "содержание", но и "форма". Последняя, по всей видимости, имеет сходные законы построения (формообразования) как в природе, так и в искусстве. И как все закономерное форма должна подчиняться прежде всего математическим законам. Но не убъет ли знание законов формообразования искусство, не превратит ли искусство в технологический процесс изготовления штампов? Истинному искусству это не грозит. Имхотеп и Хесира, По-ликлет и Пракситель, Дюрер и Леонардо да Винчи, Моцарт и Бах, Палладио и Ле Корбюзье — все они на каких-то этапах отдавали поискам законов формообразования (в том числе и математических) больше усилий, чем "беспорядочному" и "безрассудному" искусству. Однако эти поиски, эта "математика искусства" не убили в них художников, а, скорее, наоборот, помогли стать великими. Более того, знание законов формообразования часто было для художника тем "магическим кристаллом", который помогал найти живое русло истины в мучительно тревожных сумерках, сопровождающих начало любого пути. Вспомним Пушкина:

И даль свободного романа
Я сквозь магический кристалл
Еще не ясно различал.

В главе 4 мы видели, что симметрия форм живой природы обязана своим существованием прежде всего закону тяготения. Но тяготение — вечный закон природы; значит, вечна и симметрия, и, значит, вечно симметрия будет ассоциироваться с красотой. С доисторических времен симметрия играла огромную роль в искусстве. Та же заглавная роль симметрии в природе в полной мере осознана наукой нашего времени. Таким образом, математические законы симметрии становятся крепким связующим звеном между наукой и искусством.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Волошинов читать все книги автора по порядку

Александр Волошинов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика и искусство отзывы


Отзывы читателей о книге Математика и искусство, автор: Александр Волошинов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x