Александр Волошинов - Математика и искусство

Тут можно читать онлайн Александр Волошинов - Математика и искусство - бесплатно полную версию книги (целиком) без сокращений. Жанр: Детская образовательная литература, издательство Просвещение, год 1992. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Александр Волошинов - Математика и искусство краткое содержание

Математика и искусство - описание и краткое содержание, автор Александр Волошинов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В книге на обширном материале от античных времен до наших дней прослеживаются пути взаимодействия и взаимообогащения двух великих сфер человеческой культуры — науки и искусства, развивается стержневая идея книги — идея единства науки и искусства, единства истины и красоты. Рассматривая 'математические начала' формообразования в музыке, архитектуре и живописи, автор показывает, что глубинные, фундаментальные закономерности, присущие этим видам искусства, находят адекватное выражение на языке математики. Книга написана ярко, увлекательно и доступно, богато иллюстрирована в цвете и рассчитана на самые широкие круги читателей.

Математика и искусство - читать онлайн бесплатно полную версию (весь текст целиком)

Математика и искусство - читать книгу онлайн бесплатно, автор Александр Волошинов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Пидоу Д. Геометрия и искусство.- М.: Мир, 1979.

Раушенбах Б. В. Пространственные построения в древнерусской живописи.- М.: Наука, 1975.

Раушенбах Б. В. Пространственные построения в живописи.- М.: Наука, 1980.

Раушенбах Б. В. Системы перспективы в изобразительном искусстве: Общая теория перспективы.- М.: Наука, 1986.

Рынин Н. А. Начертательная геометрия. Перспектива.- Петроград, 1918.

Тадеев В. А. От живописи к проективной геометрии.- Киев: Выща школа, 1988.

Федоров М. В. Рисунок и перспектива.- М.: Искусство, 1960.

Фролов С. А., Покровская М. В. Начертательная геометрия: что это такое? — Минск, Вышэйшая школа, 1986.

Примечания

1

В более распространенной русской транскрипции Инь-Ян теряется графическая симметрия (а значит, отчасти и философия) двух древнекитайских первоначал.

2

Слова "прекрасное" и "красота" мы употребляем в широком смысле как синонимы.

3

Дискурсия (лат. discursus) — рассуждение.

4

Кант безвыездно прожил всю свою долгую жизнь в родном Кенигсберге (ныне г. Калининград), учился в Кенигсбергском университете, затем стал его профессором, читал в нем только курсы философии, эстетики, истории, филологии, но и математики, физики, астрономии, космогонии и даже Фортификации. Всю свою жизнь этот "всеобъемлющий гений" посвятил науке, отказавшись от личной жизни и даже поездок в другие города.

5

За многие века система Птолемея была настолько хорошо разработана, что ею продолжали пользоваться и после Коперника. Ведь система Коперника, до тех пор пока она не подверглась математической обработке и ряду уточнений,имела только мировоззренческое значение.

6

3десь Вольтер (1694-1778) и Жан-Жак Руссо (1712-1778)для Блеика прежде всего не писатели, а философы и ученые-энциклопедисты, просветители.

7

Как стало известно впоследствии, "инженер Полетаев" оказался вымышленным персонажем. Его придумал поэт М. Светлов и для обострения полемики умышленно поставив на самые крайние позиции. Мистификация М. Светлова оказалась удачной.

8

Порфирий приводит любопытный эпизод. Проведуя вегетарианство, Пифагор тем не менее посоветовал самосскому атлету Евримену ежедневно питаться мясом, а не сыром и смоковами, как это делали остальные спортсмены. Евримен последовал Пифагоровой мудрости — набрался сил и, несмотря на свой малый рост, одержал победу в борьбе на Олимписких играх.

9

Известна легенда, рассказывающая, что однажды, увидев, как били собаку, Пифагор сказал: "Перестаньте ее бить, в этой собаке живет душа моего друга: я узнал его по голосу".

10

Некоторые отголоски пифагорейской числовой мистики мы встречаем и в наши дни: например, обычай дарить нечетное число цветов (четное число у пифагорейцев считалось несчастливым).

11

Вот это доказательство. Допустим противное, т. е пусть картинка 628= m/n или m 2= 2n 2, причем натуральные числа m и n не имеют oбщих делителей, кроме единицы, так как если бы они существовали, то на них дробь можно было бы сократить. Если m — нечетное число, мы получаем противоречие, так как 2n 2четно, а квадрат нечетного числа — число нечетное. Еcли m четно и равно 2k, то 4k 2= 2n 2, или 2k 2= n 2так что n должно быть четным и, следовательно, числа m и n имеют общий делитель 2, что противоречит начальному предположению. Итак, картинка 629не является отношением двУх натуральных чисел

12

В теории музыки понятия интервала и интервального коэффициента строго не разграничены. Следуя традиции, мы часто для краткости будем называть интервальный коэффициент интервалом.

13

Характер звучания лада, конечно, не определяется столь грубо и однозначно. Вопрос этот очень деликатный, и о нем мы еще поговорим в конце главы.

14

Судьба Алексея Федоровича Лосева счастлива и трагична. Счастлива, потому что до последнего дня своей 95-летней жизни Лосев сохранил поразительную работоспособность и успел завершить главный труд — восьмитомную "Историю античной эстетики". Трагична, потому что другие восемь томов его сочинений, написанных на полвека ранее (1927 — 1930), были преданы анафеме, а сам автор, будучи незаконно репрессирован, продолжил свои философские изыскания на строительстве Беломорско-Балтийского канала, откуда он писал: "Я закован в цепи, когда в душе бурлят непочатые и неистощимые силы". Одна из этих работ Лосева — "Музыка как предмет логики" — могла бы служить путеводной звездой к этой книге. И все-таки судьба А. Ф. Лосева счастлива, ибо рукописи не горят. Сегодня огромное философское наследие А. Ф. Лосева обретает свое второе рождение.

15

Напомним, что остальные три планеты Солнечной системы — Уран, Нептун и Плутон — были открыты лишь в XVIII, XIX и XX веках соответственно.

16

Отсюда пошло выражение "Быть на седьмом небе", обозначающее высшую степень блаженства.

17

В самом деле, сумма плоских углов s при вершине выпуклого многогранника должна быть строго меньше 360°, а число граней при вершине m≥3. Тогда гранями правильного многогранника могут быть только три плоские фигуры: правильные треугольник, четырехугольник (квадрат) и пятиугольник, ибо уже для шестиугольников s = 120°*3 = 360°. Название правильному многограннику дается по общему числу граней М. Таким образом, из равносторонних треугольников можно составить три правильных многогранника при m = 3, 4, 5 (при m = 6 s = 60°*6 = 360°):

1. Тетраэдр (четырехгранник): m = 3, М = 4.

2. Октаэдр (восьмигранник): m = 4, М = 8.

3. Икосаэдр (двадцатигранник): m = 5, М = 20, а из квадратов и правильных пятиугольников — только по одному при m = 3 (при m = 4 s = 90°*4 = 360° — для квадратов и s = 108°*4 = 432° — для пятиугольников).

4. Гексаэдр (шестигранник), или куб: m = 3, М = 6.

5. Додекаэдр (двенадцатигранник): m = 3, М = 12.

В любом выпуклом многограннике числа вершин L, граней М и ребер N связаны формулой Эйлера L + M — N = 2.

18

Пятая сущность - по-латыни квинтэсенция — у средневековых алхимиков ста означать тончайший элемент, составляющий якобы сущность вещей. В настоящее время квинтэссенция — синоним самого главного, иболее существенного.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Волошинов читать все книги автора по порядку

Александр Волошинов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика и искусство отзывы


Отзывы читателей о книге Математика и искусство, автор: Александр Волошинов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x