Александр Волошинов - Математика и искусство

Тут можно читать онлайн Александр Волошинов - Математика и искусство - бесплатно полную версию книги (целиком) без сокращений. Жанр: Детская образовательная литература, издательство Просвещение, год 1992. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Александр Волошинов - Математика и искусство краткое содержание

Математика и искусство - описание и краткое содержание, автор Александр Волошинов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В книге на обширном материале от античных времен до наших дней прослеживаются пути взаимодействия и взаимообогащения двух великих сфер человеческой культуры — науки и искусства, развивается стержневая идея книги — идея единства науки и искусства, единства истины и красоты. Рассматривая 'математические начала' формообразования в музыке, архитектуре и живописи, автор показывает, что глубинные, фундаментальные закономерности, присущие этим видам искусства, находят адекватное выражение на языке математики. Книга написана ярко, увлекательно и доступно, богато иллюстрирована в цвете и рассчитана на самые широкие круги читателей.

Математика и искусство - читать онлайн бесплатно полную версию (весь текст целиком)

Математика и искусство - читать книгу онлайн бесплатно, автор Александр Волошинов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

От внешнего строения космоса Платон в "Тимее" переходит к внутреннему его строению, т. е. строению материи. Это знаменитое учение Платона о четырех стихиях - основных компонентах мира и их атомах — Платоновых телах . Менее известно, что это учение также "музыкально", но, прежде чем остановиться на нем, следует сказать несколько слов о самом Платоне и его научных взглядах, что, видимо, поможет понять истоки этого экзотического учения.

Платон 427347 Римская мраморная копия с греческого оригинала Ок 370 до н - фото 154

Платон (427-347). Римская мраморная копия с греческого оригинала. Ок. 370 до н. э

Платон (427-347 гг. до н. э.) — величайший философ античности, оказавший огромное влияние на развитие всей мировой культуры. Однако Платон был не только философом, создателем первой в истории человечества системы объективного идеализма, "линии Платона", по определению В. И. Ленина (т. 18, с. 131), но также и блестящим художником слова, организатором и теоретиком науки, ученым и гражданином города-государства Афины. После казни своего любимого учителя Сократа, болезненно переживая кризис афинской демократии, Платон покинул Афины и около двенадцати лет провел в путешествиях. Вернувшись на родину, Платон основал научную школу — Академию, которая разместилась на купленном для этой цели Платоном участке в роще близ Афин. Роща носила имя древнеаттического героя Академа, откуда и пошло название первой в истории человечества научной школы — Академии.

Платон и его ученики, платоники, были самой влиятельной после пифагорейцев группой мыслителей, а Платонова Академия в течение девяти столетий оставалась центром, влекущим к себе лучшие умы античности. Платон направлял и воодушевлял научную работу. Великие математики Теэтет и Евдокс были друзьями Платона, его учителями в математике и учениками в философии. Великий ученик Платона — Аристотель, будущий учитель и воспитатель Александра Македонского, двадцать лет жизни провел в благотворной атмосфере Академии. Хотя сам Платон и не был математиком, он придавал огромное значение изучению математики, живо интересовался ею и требовал от своих учеников основательных знаний математики, прежде чем посвятить их в свою философию. По преданию, на вратах Академии Платона было начертано: "Негеометр да не войдет!", а одному из начинающих философов, не знавшему математики, Платон сказал: "Уйди прочь! У тебя нет орудия для изучения философии..."

Не останавливаясь на философской системе Платона, отметим только, что, согласно Платону, существуют два мира: материальный несовершенный мир вещей и совершенный мир идей. Законы мира вещей несовершенны и преходящи, тогда как в мире идей господствуют абсолютные и неизменные истины, которые и надлежит изучать философу. Материальный мир есть не более как одна из несовершенных реализаций мира идей, и постигнуть реальный мир можно только с помощью математики идеального мира. То, что идеальный мир основан на математике, сомнений не вызывало. "Знание, к которому стремятся геометры, есть знание вечного, а не того, что тленно и преходяще",- утверждал Платон.

Таким образом, Платон ясно осознавал значение математизации науки, и это именно тот путь, по которому пошло развитие науки в античности и по которому оно продолжает идти сегодня. Однако следует четко различать: то, что Платон видел в математике инструмент познания законов природы, безусловно, верно, но что он считал истинным только мир идей, ложно. Это заблуждение Платона было вызвано тем очевидным фактом, что законы мира вещей открывались лишь путем абстрагирования и идеализации, путем "стирания случайных черт". Потому идеальный мир идей и казался Плауну истинным и непреходящим. Таким образом, идеализм Платона был связан с преувеличением роли разума и недооценки значения опыта.

Показательно, что в наше время стремительной математизации и широчайшего применения ЭВМ, время, когда стало возможным физический эксперимент заменить экспериментом вычислительным и буквально "увидеть" на экране дисплея ЭВМ то или иное физическое явление, некоторые философы-идеалисты пытаются поднять на щит учение Платона. Ответим сформулирован в статье Ю. А. Жданова "Философские проблемы современного естествознания": "В законах математики отражаются не свойства ума, а свойства всей материи, в том числе и ума. Вот почему эти законы имеют объективное содержание, вот почему они обладают эвристическим характером, вот почему на их основе можно строить научный прогноз и предсказание, проверяя их в последующем практикой". Напомним, что и в начале нашего столетия — времени рождения теории Эйнштейна и бурных потрясений в физике — Философы-идеалисты восклицали: "Материя исчезла, остались одни уравнения!" В. И. Ленин в своем труде "Материалы и эмпириокритицизм" подверг резкой критике эту идеалистическую трактовку математического знания, а гениальное ленинское предвидение "Электрон так жe неисчерпаем , как и атом" (т. 18, с. 277) подтверждается всем ходом развития физики элементарных частиц.

Но вернемся в Древнюю Грецию. Теперь нам будет понятно, откуда Платону пришла мысль отождествлять физические элементы (атомы четырех стихий) с геометрическими телами — правильными многогранниками: в геометрии Платон видел ключ к познанию природы. Впрочем, по порядку...

Многогранник называется правильным, если он лежит по одну сторону от плоскости любой его грани, т. е. является выпуклым, и все его грани есть равные правильные многоугольники. Простой подсчет суммы углов при вершине правильного многогранника показывает, что существует только пять правильных многогранников [17] В самом деле, сумма плоских углов s при вершине выпуклого многогранника должна быть строго меньше 360°, а число граней при вершине m≥3. Тогда гранями правильного многогранника могут быть только три плоские фигуры: правильные треугольник, четырехугольник (квадрат) и пятиугольник, ибо уже для шестиугольников s = 120°*3 = 360°. Название правильному многограннику дается по общему числу граней М. Таким образом, из равносторонних треугольников можно составить три правильных многогранника при m = 3, 4, 5 (при m = 6 s = 60°*6 = 360°): 1. Тетраэдр (четырехгранник): m = 3, М = 4. 2. Октаэдр (восьмигранник): m = 4, М = 8. 3. Икосаэдр (двадцатигранник): m = 5, М = 20, а из квадратов и правильных пятиугольников — только по одному при m = 3 (при m = 4 s = 90°*4 = 360° — для квадратов и s = 108°*4 = 432° — для пятиугольников). 4. Гексаэдр (шестигранник), или куб: m = 3, М = 6. 5. Додекаэдр (двенадцатигранник): m = 3, М = 12. В любом выпуклом многограннике числа вершин L, граней М и ребер N связаны формулой Эйлера L + M — N = 2. . Доказательство этого факта имеется в XIII книге "Начал" Евклида, но сам факт был, безусловно, известен Платону, а правильные многогранники знали пифагорейцы задолго до Платона. Форму правильных тел, по-видимому, подсказала древним грекам сама природа: кристаллы поваренной соли имеют форму куба, кристаллы квасцов — октаэдра, а кристаллы пирита — додекаэдра. Последний, как показали раскопки в итальянских Альпах, был любимой игрушкой этрусских детей задолго до нашей эры.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Волошинов читать все книги автора по порядку

Александр Волошинов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика и искусство отзывы


Отзывы читателей о книге Математика и искусство, автор: Александр Волошинов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x