Александр Волошинов - Математика и искусство

Тут можно читать онлайн Александр Волошинов - Математика и искусство - бесплатно полную версию книги (целиком) без сокращений. Жанр: Детская образовательная литература, издательство Просвещение, год 1992. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Александр Волошинов - Математика и искусство краткое содержание

Математика и искусство - описание и краткое содержание, автор Александр Волошинов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В книге на обширном материале от античных времен до наших дней прослеживаются пути взаимодействия и взаимообогащения двух великих сфер человеческой культуры — науки и искусства, развивается стержневая идея книги — идея единства науки и искусства, единства истины и красоты. Рассматривая 'математические начала' формообразования в музыке, архитектуре и живописи, автор показывает, что глубинные, фундаментальные закономерности, присущие этим видам искусства, находят адекватное выражение на языке математики. Книга написана ярко, увлекательно и доступно, богато иллюстрирована в цвете и рассчитана на самые широкие круги читателей.

Математика и искусство - читать онлайн бесплатно полную версию (весь текст целиком)

Математика и искусство - читать книгу онлайн бесплатно, автор Александр Волошинов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Представляя пифагорову комму в виде

мы получим еще один важный результат 12 квинт с точностью до пифагоровой коммы - фото 170

мы получим еще один важный результат: 12 квинт с точностью до пифагоровой коммы равны 7 октавам .

Но т е новый полутон содержал иррациональное число которого пифагорейцы - фото 171т. е. новый полутон содержал иррациональное число картинка 172, которого пифагорейцы боялись как огня. Взять столь "некрасивое" число в качестве единицы измерения музыкальной гаммы было немыслимым для пифагорейцев: это противоречило всей философии целочисленных отношений. Поэтому пифагорейцы пошли другим путем: в качестве основы музыкальной гаммы они взяли квинту, "красивое" число 3/2.

* (Коммой (от греч. komma — отрезок) в музыкальной акустике называется интервал, не превышающий 1/9 целого тона. Пифагорова комма приблизительно равна 1/9 тона Математика и искусство - изображение 173 . )

Рассмотрим ряд, составленный из степеней числа 3/2:

Оказывается с помощью этого красивого симметричного ряда можно получить все - фото 174

Оказывается, с помощью этого красивого симметричного ряда можно получить все интервальные коэффициенты пифагорова строя. Начнем с середины ряда Математика и искусство - изображение 175и все получаемые звуки будем сводить в одну октаву, умножая или деля их интервальные коэффициенты на нужные степени числа 2 (интервальный коэффициент октавы). Новые звуки будем обозначать либо ближайшим снизу основным звуком с добавлением слова "диез" картинка 176при движении по квинтам вверх, либо ближайшим сверху основным звуком с добавлением слова "бемоль" при движении по квинтам вниз Это означает соответственно повышение или - фото 177при движении по квинтам вниз. Это означает соответственно повышение или понижение основного звука. Итак,

82 Как видим двигаясь по квинтам вверх и вниз от основного тона мы - фото 178(8.2)

Как видим, двигаясь по квинтам вверх и вниз от основного тона, мы получили все ступени пифагорова строя (8.1), каждая из которых в свою очередь может быть повышена, понижена, дважды повышена или понижена и т. д. Процесс этот, к сожалению, бесконечен. Точного октавного повторения основного тона ( до ) мы так и не получим. (Легко видеть, что си-диез и ре-бемоль-бемоль совпадают с основным тоном ( до ) опять же с точностью до пифагоровой коммы.) Следовательно, и точно разделить октаву на целое число частей этим методом мы не сможем.

Таким образом, желая разделить пять тонов в (8.1) на полутона, мы получили, по крайней мере, 10 промежуточных звуков. Новый пифагоров строй примет вид (интервальные коэффициенты новых звуков для краткости опущены)

Какие из этих дополнительных звуков взять с бемолями или диезами Для - фото 179

Какие из этих дополнительных звуков взять: с бемолями или диезами? Для музыкантов, играющих на инструментах с нефиксированной высотой звуков (скрипачей, например), эта проблема не стоит. Они берут и те и другие. В результате звучание скрипки становится более выразительным и контрастным, так как в ладе обостряются тяготения неустойчивых звуков к устойчивым. Этим во многом объясняется то "волшебное пение" скрипки, которое доступно только ей одной *.

*( Каким тонким является инструмент скрипка, убеждает простой пример из книги известного венгерского скрипача Карла Флеша "Искусство скрипичной игры": "Пусть на струне ля необходимо сыграть два звука ля и си-бемоль второй октавы. Разница между этими звуками равна 60 Гц. Расстояние на грифе — 2 мм, следовательно, на одно колебание струны приходится 1/30 мм. Предполагая, что ля взято чисто, и желая сыграть математически чисто си-бемоль, мы должны поставить палец в нужное место струны с точностью до 1/30 мм". Насколько же чувствительными должны быть слух и пальцы скрипача, чтобы отмерить расстояние с точностью до 1/30 мм (это 33 микрона)! )

Что касается инструментов с фиксированной высотой звуков, то введение десяти дополнительных звуков на семь основных слишком усложнило бы и сами инструменты, и игру на них. Тем более что и это не решало окончательно проблему и более тонкие построения требовали все новых и новых звуков. На сегодня в теории музыки известна масса строев с числом ступеней от 17 до 84! Но все они так и остались в кабинетах теоретиков. Практика же, руководствуясь мудрым критерием простоты (и красоты), оставила только пять дополнительных звуков: по одному в каждом из целых тонов. Они и стали черными (дополнительными) клавишами фортепиано.

Так в октаве стало 12 звуков. Поскольку каждая пара дополнительных звуков отличалась лишь на пифагорову комму (это легко проверить самостоятельно), то их попросту приравняли между собой ( до-диез стал равен ре-бемолю и т. д.).

Такое приравнивание звуков с одинаковой высотой, но разными названиями в теории музыки называется энгармонизмом . Тонкости ладового звучания были принесены в жертву простоте. Инструменты же с числом звуков в октаве, превышающим 12, можно увидеть только в музеях. В московском Музее музыкальной культуры имени М. И. Глинки хранится рояль русского писателя, музыканта и музыковеда В. Ф. Одоевского (1804-1869), в каждой октаве которого имеется не 12, а 17 клавиш, настроенных согласно (8.2).

Квинтовая цепь пифагорова строя дала простой способ настройки инструментов с фиксированной высотой звуков: органов, клавесинов, фортепиано. От основного тона (сегодня по общему признанию им является звук ля первой октавы) откладывались семь октав — скелет музыкальной шкалы. Эти октавы заполнялись 12 звуками, полученными ходами по квинтам вверх и вниз. Какие из звуков взять за дополнительные — повышенные или пониженные,- особого значения не имело. Важно было другое: пифагорова комма оставалась внутри октавы . Ее можно было переместить в любое место октавы, но нельзя было сделать только одного: нельзя было от нее избавиться! И она продолжала портить кровь музыкантам на протяжении столетий. Почему?

Если взять пифагоров строй с пониженными дополнительными звуками:

то в таком строе все квинты будут звучать чисто иметь интервальный коэффициент - фото 180

то в таком строе все квинты будут звучать чисто (иметь интервальный коэффициент 3/2), кроме одной. Квинта си-соль-бемоль будет иметь интервальный коэффициент 1024/ 729: 243/ 256≈1,4798, а не 1,5! От чистой квинты она, разумеется, отличается на пифагорову комму: 1,5/1,4798≈1,0136. Такая квинта на органе издавала пронзительный, неприятный звук, похожий на завывание волка, за что и была прозвана "волчьей квинтой" или просто "волком". Обращением "волчьей квинты" является "волчья кварта" соль-бемоль-си , которая также отличается от чистой кварты (4/3 = 1,333...) на пифагорову комму:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Волошинов читать все книги автора по порядку

Александр Волошинов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика и искусство отзывы


Отзывы читателей о книге Математика и искусство, автор: Александр Волошинов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x