Александр Волошинов - Математика и искусство

Тут можно читать онлайн Александр Волошинов - Математика и искусство - бесплатно полную версию книги (целиком) без сокращений. Жанр: Детская образовательная литература, издательство Просвещение, год 1992. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Александр Волошинов - Математика и искусство краткое содержание

Математика и искусство - описание и краткое содержание, автор Александр Волошинов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В книге на обширном материале от античных времен до наших дней прослеживаются пути взаимодействия и взаимообогащения двух великих сфер человеческой культуры — науки и искусства, развивается стержневая идея книги — идея единства науки и искусства, единства истины и красоты. Рассматривая 'математические начала' формообразования в музыке, архитектуре и живописи, автор показывает, что глубинные, фундаментальные закономерности, присущие этим видам искусства, находят адекватное выражение на языке математики. Книга написана ярко, увлекательно и доступно, богато иллюстрирована в цвете и рассчитана на самые широкие круги читателей.

Математика и искусство - читать онлайн бесплатно полную версию (весь текст целиком)

Математика и искусство - читать книгу онлайн бесплатно, автор Александр Волошинов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1110 Заметим что как и в диатонической гамме 119 интервальные - фото 309(11.10)

Заметим, что, как и в диатонической гамме (11.9), интервальные коэффициенты хроматической гаммы (11.10) не содержат 11-й и 13-й обертоны, а печально известный "фальшивый" 7-й обертон входит только в два коэффициента (7/5 = 1,4 и 10/7≈1,428), которые приближенно равны интервальному коэффициенту тритона Математика и искусство - изображение 310чья дурная слава известна в музыке не менее.

Взяв, как и в (11.8), в качестве энгармонически равного звука для соль-бемоль (7/5) и фа-диез (10/7) их среднее геометрическое мы придем к 12ступенной хроматической гамме чистого строя интервальные - фото 311, мы придем к 12-ступенной хроматической гамме чистого строя интервальные коэффициенты которой имеют вид

1111 На этот раз интервальные коэффициенты в 1111 не образуют никаких - фото 312(11.11)

На этот раз интервальные коэффициенты в (11.11) не образуют никаких прогрессий. Однако, нетрудно обнаружить, что гамма (11.11) также обладает глобальной геометрической симметрией относительно т е Гаммы 118 и 1111 не обладают локальной геометрической - фото 313, т. е.

Гаммы 118 и 1111 не обладают локальной геометрической симметрией поэтому - фото 314

Гаммы (11.8) и (11.11) не обладают локальной геометрической симметрией, поэтому не допускают сдвигов без искажений. Последнее означает, что модуляции в другие тональности в пифагоровом и чистом строе затруднены.

Подведем некоторые итоги. Прежде всего мы видим, что музыкальные гаммы представляют собой строго упорядоченную совокупность звуков, отобранную из всего многообразия звуков, которые способно воспринимать и различать человеческое ухо. Именно закономерное построение гаммы, а следовательно и лада, позволяет на ее основе составлять и более сложные музыкальные конструкции, также носящие закономерный характер и называемые мелодией. Можно сказать, что гамма есть основная мелодия лада.

Отметим еще одно важное обстоятельство. В каждой из рассмотренных нами хроматических гамм: равномерно-темперированной (11.1), пифагоровой (11.8) и чистого строя (11.11) — точно выполнен один тип симметрии и только приблизительно другой. Так, равномерно-темперированная гамма (11.1) обладает локальной и глобальной геометрической симметрией, но в ней только приблизительно соблюдены пропорции деления октавы на квинту и кварту, большую и малую терции и т. д. Пифагорова гамма и гамма чистого строя обладают глобальной геометрической симметрией, но локальная симметрия в них выполнена только приблизительно. Зато в обеих гаммах точно соблюдено условие пропорционального деления октавы на квинту и кварту, а гамма чистого строя обладает еще двумя парами пропорций деления, что, видимо, и делает ее наиболее мелодичной из всех трех типов гамм.

Таким образом, в строении гаммы наряду с точной симметрией мы находим и приблизительную симметрию. (О загадках приблизительной симметрии и ее роли в науке и искусстве мы уже вели речь в главе 4.) Следовательно, в законах построения музыкальной гаммы отражается противоборство симметрии и асимметрии, олицетворяющих покой и движение, закономерное и случайное, вечное и сиюминутное. Именно диалектическое единство двух противоположных начал — симметрии и асимметрии — наполняет гамму подлинной гармонией, является источником вечной красоты и юного изящества музыкальной гаммы.

Последние три десятилетия поисками математических закономерностей в музыке усиленно занимается московский композитор М. А. Марутаев. Еще в студенческие годы М. Марутаева занимала мысль найти объяснение принципам музыкальной формы и ладогармонического языка. Результаты многолетних изысканий М. Марутаева легли в основу развитой им теории качественной симметрии чисел, позволившей автору определить меру нарушения симметрии в музыкальной гамме.

На основании теории качественной симметрии чисел Марутаев строит концепцию "универсальной гармонии", т. е., проще говоря, пытается решить одну из вечных загадок: найти "формулу красоты", "универсальную гармонию", которую искали еще древние греки и которая связала бы воедино законы природы и законы искусства.

К сожалению, и на сегодня это фантастическая задача, ибо человечеству пока не известны ни единые законы природы, ни тем более законы искусства.

Вот почему у концепции Марутаева много как пылких сторонников, так и ярых противников. Мы не будем останавливаться на концепции Марутаева, которая во многом спорна, а местами и просто содержит математические огрехи (но у кого хватит смелости объявить себя специалистом и в науке, и в искусстве?!), а отметим лишь некоторые любопытные факты, установленные Марутаевым.

Вновь обратимся к гаммам. Прежде всего заметим, что, хотя мы все время говорили о 12-ступенных хроматических гаммах, мы везде фактически включали в рассмотрение 13-ю ступень (октавное повторение основного тона), которая на самом деле является 1-й ступенью следующей октавы. Если в гаммах (11.1), (11.8) и (11.11) октавное повторение основного тона не рассматривать, то получается действительно 12-ступенные музыкальные ряды, которые Марутаев называет качественными музыкальными рядами , поскольку они состоят из оригинальных качеств:

1,37

112 113 114 Легко видеть что качественная - фото 315(1.12)

113 114 Легко видеть что качественная равномернотемперированная - фото 316(1.13)

114 Легко видеть что качественная равномернотемперированная гамма - фото 317(1.14)

Легко видеть, что качественная равномерно-темперированная гамма (11.12) сохраняет свойство глобальной геометрической симметрии, центр которой сместился из точки 141 в точку 2 1124137 А вот для качественных гамм пифагорова и - фото 318≈1,41 в точку 2 11/24≈1,37:

А вот для качественных гамм пифагорова и чистого строя глобальная - фото 319

А вот для качественных гамм пифагорова и чистого строя глобальная геометрическая симметрия нарушится и будет выполняться только приблизительно. В самом деле, вычисляя среднее геометрическое для равноудаленных от концов членов ряда (11.13)

и ряда 1114 мы видим что эти числа слегка различаются однако их - фото 320

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Волошинов читать все книги автора по порядку

Александр Волошинов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика и искусство отзывы


Отзывы читателей о книге Математика и искусство, автор: Александр Волошинов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x