Александр Волошинов - Математика и искусство

Тут можно читать онлайн Александр Волошинов - Математика и искусство - бесплатно полную версию книги (целиком) без сокращений. Жанр: Детская образовательная литература, издательство Просвещение, год 1992. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Александр Волошинов - Математика и искусство краткое содержание

Математика и искусство - описание и краткое содержание, автор Александр Волошинов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В книге на обширном материале от античных времен до наших дней прослеживаются пути взаимодействия и взаимообогащения двух великих сфер человеческой культуры — науки и искусства, развивается стержневая идея книги — идея единства науки и искусства, единства истины и красоты. Рассматривая 'математические начала' формообразования в музыке, архитектуре и живописи, автор показывает, что глубинные, фундаментальные закономерности, присущие этим видам искусства, находят адекватное выражение на языке математики. Книга написана ярко, увлекательно и доступно, богато иллюстрирована в цвете и рассчитана на самые широкие круги читателей.

Математика и искусство - читать онлайн бесплатно полную версию (весь текст целиком)

Математика и искусство - читать книгу онлайн бесплатно, автор Александр Волошинов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Боттичелли. Рождение Венеры. Ок. 1483-1484. Нет живописи более поэтичной, чем живопись Боттичелли, и нет у великого Сандро картины более знаменитой, чем его 'Венера'. Неповторимо нервное изящество боттичеллиевских линий и болезненная хрупкость его вытянутых фигур. Неповторима младенческая чистота Венеры и кроткая печаль ее взора. Неповторим льнущий к телу клубок золотых волос Венеры, в котором, как в клубке змей, таится роковое коварство этого безгрешного существа. Но для неоплатоника Боттичелли его Венера, так же как и для неопифагорейца Поликлета его Дорифор,- это воплощение идеи универсальной гармонии золотого сечения, господствующего в природе

Пропорциональный анализ Венеры убеждает нас в этом Итак ряд золотого сечения - фото 448

Пропорциональный анализ Венеры убеждает нас в этом

Итак, ряд золотого сечения (15.4), (15.5) и тесно связанный с ним ряд Фибоначчи (15.6) обладают массой исключительных математических свойств, которые каким-то поразительным образом сошлись в этих феноменах. Но золотое сечение и числа Фибоначчи имеют не менее удивительные приложения не только в искусстве (с чем мы немного познакомились в гл. 4 и гл. 12), но и в живой природе. К настоящему времени накоплено множество фактов, показывающих, что ряд Фибоначчи проявляется в формах живой природы как закон единообразного роста. Ряд Фибоначчи обнаружен и в расположении семян подсолнечника или сосновой шишки, и в распределении листьев и хвои на деревьях, и в расположении стеблей. Возьмите линейку и измерьте длину трех фаланг среднего пальца и пясти. Поделив эти числа на длину первой фаланги, вы с поразительной точностью обнаружите 4 члена ряда золотого сечения (15.4):

Но самым удивительным пожалуй является то что точка питающая новую жизнь - фото 449

Но самым удивительным, пожалуй, является то, что точка, питающая новую жизнь,- пуп человека — делит тело человека в золотом сечении.

Что стоит за этими и многими другими фактами — игра чисел или некоторый универсальный закон природы? Хочется верить, во второе, ибо жизнь — это не хаос случайностей, а претворение генетически определенных законов. Видимо, действием закона золотого сечения в природе и объясняются интригующие проявления этого закона в искусстве. По крайней мере, автор стоит на "природнической" точке зрения на прекрасное и в законах искусства видит отражение законов красоты природы (хотя и те и другие законы пока еще не познаны).

Почему же закон золотого сечения так часто проявляется в архитектуре? Этому есть, на наш взгляд, вполне рациональное, математическое объяснение. Мы знаем, что для достижения гармонии в произведении искусства (в том числе и в архитектурном произведении) должен выполняться принцип Гераклита: "из всего — единое, из единого — все". В самом деле, гармония в архитектурном произведении зависит не столько от размеров самого сооружения, сколько от соотношений между размерами составляющих его частей. Для того чтобы выполнялся основной принцип гармонии "все во всем", взаимосвязь частей и целого в архитектурном произведении должна иметь единое математическое выражение, т. е. архитектурное "целое" а и его части а 1, а 2, а 3, а 4, ... должны находиться в одинаковых отношениях

Отсюда a a 1p а 1а 2р а 2 а 3p или a 1 qa a 2 q 2a a 3 g 3a - фото 450

Отсюда a = a 1p, а 1=а 2р, а 2= а 3p, ..., или a 1= qa, a 2= q 2a, a 3= g 3a, ... (q = l/p), т. е. "целое" а и его части a 1, а 2, а 3, ... должны образовывать геометрическую прогрессию

Математика и искусство - изображение 451(15.13)

Но части архитектурного целого должны "сходиться" в целое, т. е., разделив "целое" а на части а 1и а 2, необходимо, чтобы

Математика и искусство - изображение 452

Учитывая (15.13), условие (15.14) примет вид

т е единственное положительное значение для q равно коэффициенту золотого - фото 453

т. е. единственное положительное значение для q равно коэффициенту золотого сечения φ.

Итак, из всех геометрических прогрессий (15.13) только ряд золотого сечения обладает аддитивным свойством (15.14), поэтому только при делении "целого" a на части а 1и а 2в золотой пропорции выполняется принцип "все во всем" и одновременно части "сходятся" в целое.

Пропорции храма Василия Блаженного в Москве определяются восемью членами ряда - фото 454

Пропорции храма Василия Блаженного в Москве определяются восемью членами ряда золотого сечения: 1, φ, φ 2, φ 3, φ 4, φ 5, φ 6, φ 7

При этом соотношения (15.13) и (15.14) принимают вид (12.4)

Это и есть знакомый нам ряд золотого сечения Подробным анализом пропорций - фото 455

Это и есть знакомый нам ряд золотого сечения.

Подробным анализом пропорций некоторых архитектурных шедевров разных эпох, стилей и разных народов мы займемся в следующих двух главах. Но сейчас нам хочется закончить разговор о золотом сечении одним примером, показывающим, насколько органично входит оно в архитектурные пропорции. В качестве примера рассмотрим пропорциональный строй одной из жемчужин древнерусской архитектуры — храма Василия Блаженного в Москве. За "целое" а = 1 принята высота храма. Пропорции храма определяются восемью членами ряда золотого сечения:

Многие из членов ряда неоднократно повторяются в пропорциях этого затейливого - фото 456

Многие из членов ряда неоднократно повторяются в пропорциях этого затейливого архитектурного сооружения, но всегда благодаря аддитивному свойству золотого сечения мы уверены в том, что части сойдутся в целое, т. е.

Таким образом аддитивное свойство золотого сечения делает эту геометрическую - фото 457

Таким образом, аддитивное свойство золотого сечения делает эту геометрическую пропорцию единственной и неповторимой.

16. Пропорции: от Парфенона до Нотр-Дама

...Вся наша Франция заключена в наших соборах, как и вся Греция сжата в одном Парфеноне.

О. Роден

"Человек — мера всех вещей..." Этот знаменитый афоризм древнегреческого философа-софиста Протагора (ок. 490 — ок. 420 до н. э.) является ключом к разгадке тайны пропорций Парфенона, его поразительной гармонии и спокойствия. Как это ни парадоксально, но между живыми линиями человеческого тела и застывшими на тысячелетия каменными очертаниями древнего сооружения существует глубокая связь, выраженная в математических законах пропорциональности. Но по порядку...

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Волошинов читать все книги автора по порядку

Александр Волошинов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математика и искусство отзывы


Отзывы читателей о книге Математика и искусство, автор: Александр Волошинов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x