Джо Боулер - Математическое мышление
- Название:Математическое мышление
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2019
- Город:Москва
- ISBN:9785001008910
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джо Боулер - Математическое мышление краткое содержание
Математическое мышление - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Учителя Рейлсайд оценивали знания учеников по многим аспектам, а также использовали многофакторную систему оценки (см. главу 8). Стандартные тесты, которые ученики должны были сдавать по требованиям штата Калифорния, не предусматривали оценку знаний в соответствии с многоплановым подходом, но школьники все равно показали очень высокие результаты, потому что научились добиваться успеха на уроках и не боялись математики. Кроме того, к моменту сдачи тестов штата ученики уверенно владели навыками решения задач и были готовы ответить на любой вопрос. Результаты тестирования школьников Рейлсайд по математике были выше, чем по другим предметам (что очень необычно), а сама школа превзошла все остальные школы округа по математике, хотя и была расположена в районе с самым низким уровнем доходов населения.
Во время одного урока алгебры, на котором я присутствовала, ученикам задали как всегда сложную и интересную задачу с краткими инструкциями. Им предложили воспользоваться математическими инструментами, например таблицами с двумя столбцами и графиками, чтобы составить уравнение вида y = mx + b , позволяющее вычислить длину шнурков для ботинок разных размеров (пример 7.5).

Шнурки какой длины нужны для ботинок разных размеров?
Проанализируйте соотношение между длиной шнурков и размером ботинок.
Составьте уравнение вида y = mx + b , которое поможет башмачнику определить длину шнурков, подходящих ботинкам разных размеров.
Учительница предложила группам учеников поработать с настоящими шнурками, предоставленными одним из членов группы. Она сформулировала задачу, сообщив ученикам, что существует много способов решения этой задачи, а успешная работа над ней потребует правильной коммуникации между членами группы: все должны выслушивать мнение других и давать друг другу возможность обдумать свою работу. Кроме того, учительница объяснила, что ученики получат более высокую оценку за эту задачу, если проиллюстрируют и объяснят свою работу несколькими способами.
Как и в случае многих математических вопросов, для многих учеников самым трудным было начало: нужно было понять, с чего начать. Им предложили составить уравнение, которое поможет купить шнурки. Это открытая постановка задачи, позволяющая самостоятельно определить, что в их уравнении могут быть представлены такие переменные, как число отверстий для шнурков и длина, необходимая для того, чтобы завязать бант. Кроме того, нужно было определить, что переменная y должна представлять в уравнении искомую длину шнурков.
Наблюдая за уроком, я заметила, что многие группы не знали, с чего начать. Мальчик из одной группы сразу заявил: «Я этого не понимаю», а другой согласился с ним: «Я не понимаю вопрос». В этот момент девочка из этой же группы предложила мальчикам еще раз прочесть вопрос вслух. Один мальчик спросил остальных: «Как этот ботинок связан с уравнением?» Другой предложил определить длину своих шнурков. Члены группы начали измерять длину завязки, и в этот момент один мальчик сказал, что им нужно учесть количество отверстий для шнурков. Группа продолжила работу; дети помогали друг другу, задавая вопросы, которые должны была проанализировать группа.
Я наблюдала много подобных ситуаций, когда ученики смогли приступить к решению задачи, подбадривая друг друга, перечитывая задание и задавая друг другу вопросы. Им предлагали прочесть задачу вслух, а когда они не могли двигаться дальше — задавать друг другу вопросы такого рода.
• Что подразумевает этот вопрос?
• Как можно изменить формулировку этого вопроса?
• Каковы основные элементы этой задачи?
В Рейлсайд учителя использовали такой подход: поставить группам задачу, а когда все закончат работу, задать дополнительный вопрос для оценки понимания. Благодаря вопросам, а также поддержке учителей (например, те предлагали иначе сформулировать задачу) ученики научились задавать такие же полезные вопросы друг другу. Вскоре после того, как они начали измерять длину завязок и размышлять о зависимости между ней и количеством отверстий для шнурков, повысился уровень вовлеченности всего класса. Это было обусловлено рядом факторов.
• Работа учителя, который обеспечил продуманную постановку задачи и ходил по классу, задавая ученикам вопросы.
• Сама задача, которая была достаточно открытой и увлекательной, чтобы разные ученики смогли внести свой вклад в ее решение.
• Многоплановость занятия, в ходе которого приветствовались разные способы работы: постановка вопросов, построение диаграмм и выдвижение гипотез.
• Предложение использовать в работе над задачей предмет и идею из реального мира.
• Высокий уровень коммуникации между детьми: они научились поддерживать друг друга, задавая вопросы.
Метод групповой работы используют многие кафедры математики, но они не добиваются таких же высоких показателей успеха учеников и того уровня эффективности работы, который мы видели в Рейлсайд. Одна из причин успеха учеников этой школы состоит в том, что в ней преподают и высоко ценят многоплановую математику, а также учат помогать друг другу.
Распределение ролей
Когда учеников распределили по группам, каждому из них выделили роль в своей группе. В примере 7.6 показан рабочий лист с описанием ролей, который выдается ученикам.
Фасилитатор
• Позаботьтесь о том, чтобы ваша группа прочла эту карточку, прежде чем приступать к заданию. «Кто хочет прочесть? Все поняли, что нужно делать?»
• Обеспечивайте сплоченность группы. Позаботьтесь о том, чтобы были услышаны идеи каждого. «Кто-то понял это иначе? Мы готовы двигаться дальше?» Убедитесь, что каждый член группы может объяснить свои идеи.
Секретарь (составитель отчета)
• Ваша группа должна структурировать полученные результаты. Необходимо, чтобы они отражали идеи всех участников и были упорядоченными. Используйте разные цвета, стрелки и другие инструменты, передающие суть математических концепций, аргументов и связей. «Как нам проиллюстрировать эту идею?» Будьте готовы участвовать в совещании с учителем.
Ответственный за ресурсы
• Получите материалы, необходимые вашей команде.
• Убедитесь, что все вопросы требуют командной работы.
• Когда ваша команда закончит работу, позовите учителя, чтобы проанализировать вместе с ним результаты.
Капитан команды
Читать дальшеИнтервал:
Закладка: