Джо Боулер - Математическое мышление

Тут можно читать онлайн Джо Боулер - Математическое мышление - бесплатно ознакомительный отрывок. Жанр: Детская образовательная литература, издательство Манн, Иванов и Фербер, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Джо Боулер - Математическое мышление краткое содержание

Математическое мышление - описание и краткое содержание, автор Джо Боулер, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Математика может учить логике только тогда, когда преподавание включает творческий подход к решению интересных задач. Эта книга для тех, кто хочет обучать математике так, чтобы у учеников горели глаза.

Математическое мышление - читать онлайн бесплатно ознакомительный отрывок

Математическое мышление - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Джо Боулер
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Ученики, получившие это предложение, добились более высоких результатов. Эффект был особенно сильным в случае цветных учеников, многие из которых чувствуют, что учителя меньше их ценят (Cohen & Garcia, 2014). Я часто рассказываю учителям об этом результате, и они всегда осознают его значимость. Но я говорю об этом не в надежде на то, что учителя будут добавлять это предложение ко всем работам. Иначе ученики заподозрят учителей в неискренности, и предложение будет иметь обратный эффект. Я хочу подчеркнуть силу слов учителей и их убеждений в отношении учеников, а также призвать учителей постоянно подавать детям позитивные сигналы о том, что в них верят.

Учителя могут донести позитивные ожидания до учеников с помощью ободряющих слов. Это легко сделать с мотивированными учениками, которым легко учиться и которые умеют быстро работать. Но еще важнее донести такие позитивные убеждения и ожидания до немотивированных учеников, которые работают медленно и которым все дается с трудом. Важно также осознавать, что скорость, с которой ученики улавливают суть концепций, не указывает на наличие математических способностей (Schwartz, 2001). Как бы трудно это ни было, важно не придерживаться предвзятого мнения по поводу того, кто будет работать хорошо над задачей, еще до ее постановки. Мы всегда должны быть готовы к тому, что любой ученик будет работать хорошо. Некоторые ребята ведут себя так, будто математика для них — постоянная борьба; они могут задавать много вопросов или все время говорить, что не могут двигаться дальше, но они просто скрывают свой математический потенциал и, вероятно, обладают фиксированным мышлением. Некоторые ученики, возможно, в раннем возрасте получили негативные сигналы и опыт взаимодействия с математикой, или у них не было таких условий для роста мозга и обучения, как у других, поэтому их уровень ниже уровня ровесников. Но это не значит, что они не смогут повысить свой уровень при правильном подходе к преподаванию математики, позитивных сигналах и, главное, высоких ожиданиях со стороны учителя. Вы можете стать человеком, который полностью изменит жизнь этих детей и откроет им путь к обучению. Как правило, для этого нужен всего один человек — и его ученики никогда не забудут.

Цените трудности и неудачи

Учителя заботятся об учениках, хотят, чтобы они добились успеха, и знают, что тем важно испытывать положительные эмоции к математике. Возможно, именно это привело к тому, что большинство уроков математики в США проводятся так, чтобы ученики выполняли б о льшую часть заданий правильно. Но новые данные о головном мозге показывают, что детям необходимо иное. Самые эффективные уроки математики — те, во время которых ученики работают над сложными задачами, когда их побуждают рисковать и они напряженно трудятся и терпят неудачи, но при этом получают удовольствие. Это значит, что математика должна быть трудной для учеников, чтобы создать условия для роста их мозга и установления связей. Но недостаточно просто повысить уровень сложности задач: это вызвало бы у учеников чувство безысходности. Это означает скорее необходимость изменения характера задач на уроках математики и постановки задач из категории «низкий пол, высокий потолок». Как было сказано в главе 5, «низкий пол» — доступность изучаемых концепций, а «высокий потолок» — способность учеников осмыслить их на высоком уровне.

Кроме того, учителя должны доносить до учеников мысль о том, что трудности и неудачи полезны. Многие студенты, которых я обучаю в Стэнфорде, всю жизнь добивались больших успехов и получали губительную обратную связь с установкой на данность, когда им говорили, что они умные. Сталкиваясь в Стэнфорде с более трудной работой и не получая оценки A за все, некоторые из них расстраиваются, ощущая опустошенность и ставя под сомнение свои способности. Когда они занимаются математикой, которая заставляет их прилагать усилия (это самый подходящий момент для обучения), они быстро теряют уверенность в себе и начинают сомневаться, достаточно ли они умны, чтобы учиться в Стэнфорде. Эти студенты воспитывались в культуре достижений, где трудности и неудачи никогда не ценились. Мои первокурсники говорят мне, насколько важны были для них идеи, которые мы изучаем, и как осознание того, что трудности полезны, помогло им продолжать изучение курса математики и инженерного дела и помешало бросить заниматься дисциплинами STEM.

Мы должны всячески стремиться развеять миф об успехе без усилий, подчеркивая, что успешные люди много работают и часто терпят неудачи — даже те, кого считают гениями. Мы должны воздерживаться от высокой оценки успеха без усилий и похвал в адрес учеников, которые быстро решают математические задачи. Нам следует высоко ценить настойчивость и глубокие размышления. Когда ученики терпят неудачу и сталкиваются с трудностями, это ничего не говорит об их математическом потенциале; это свидетельствует о том, что их мозг растет, активизируются синапсы и формируются новые пути, которые сделают их сильнее в будущем.

Хвалите учеников и помогайте им, способствуя их развитию

Работая с детьми дошкольного возраста, Кэрол Дуэк обнаружила, что некоторые из них проявляют настойчивость и стремятся продолжать, когда терпят неудачу, а другие сразу бросают работу и просят снова дать им легкие задачи. Такая настойчивость и ее отсутствие были присущи мышлению детей, которым исполнилось всего три-четыре года.

Когда исследователи организовали с этими детьми ролевые игры и предложили им притвориться взрослыми, оценивающими их работу, настойчивые дети изображали взрослых, которые сосредоточены на стратегиях и говорят, что детям удастся добиться успеха, если они уделят работе больше времени или используют другой подход. Дети, которым не была свойственна настойчивость, изображали взрослых, утверждающих, что ребенок не может закончить работу и должен сидеть у себя в комнате. Создавалось впечатление, что ненастойчивые дети получили обратную связь о том, что у них есть личностные ограничения, а неудача — это плохо (Gunderson et al., 2013). Результаты этого исследования и многих других по теме мышления (Dweck, 2006a, 2006b; Good, Rattan, & Dweck, 2012) свидетельствуют, что формы обратной связи и похвалы очень важны. Когда ученики слышат, что они умные, поначалу это доставляет им удовольствие. Однако, сталкиваясь с неизбежными трудностями и неудачами, они начинают сомневаться в своих умственных способностях. Такие дети постоянно оценивают себя в соответствии с неизменной шкалой «умности», что вредит им, даже если они получают много положительной обратной связи по поводу своих способностей, что иллюстрирует пример со студентами Стэнфорда.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джо Боулер читать все книги автора по порядку

Джо Боулер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Математическое мышление отзывы


Отзывы читателей о книге Математическое мышление, автор: Джо Боулер. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x