Чарльз Эллис - Эпигенетика
- Название:Эпигенетика
- Автор:
- Жанр:
- Издательство:Техносфера
- Год:2010
- Город:Москва
- ISBN:978-5-94836-257-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Чарльз Эллис - Эпигенетика краткое содержание
Книга ярко и наглядно повествует о новой науке общебиологического значения — эпигенетике, а также об ее отдельных областях. В издании представлено описание разных эпигенетических сигналов и механизмов их реализации, а также собственно феномен, история и концепции эпигенетики, ее отдельные механизмы и пути реализации эпигенетических сигналов в клетке. Авторы различных глав данной книги — ведущие в мире специалисты в области эпигенетики, являющиеся, как правило, и основоположниками ее отдельных областей.
Издание будет полезно широкому кругу читателей, интересующихся коренными проблемами живого мира, сущности жизни и молекулярных механизмов ее проявления.
По формирующейся традиции современной российской научной литературы, оригинальное русскоязычное печатное издание неопрятно переведено, отвратительно вычитано и содержит большое количество ошибок, начиная с обложки. Чарльз Дэвид Эллис указан как С. Д. Эллис.
Эпигенетика - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Brattstrom L., Wilcken D.E., Ohrvik J., and Brudin L., 1998. Common methylenetetrahydrofolate reductase gene mutation leads to hyperhomocysteinemia but not to vascular disease: The result of a meta-analysis. Circulation 98: 2520-2526.
Brown V., Jin P., Ceman S., Darnell J.C., O’Donnell W.T., Tenen-baum S.A., Jin X., Feng Y., Wilkinson K.D., Keene J.D., et al., 2001. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107: 477-487.
Carney R.M., Wolpert CM., Ravan S.A., Shahbazian M., Ashley-Koch A., Cuccaro M.L., Vance J.M., and Pericak-Vance M.A., 2003. Identification of MeCP2 mutations in a series of females with autistic disorder. Pediatr. Neurol. 28: 205-211.
Caspary T., Cleary M.A., Perlman E.J., Zhang P., Elledge S.J., and Tilgh-man S.M., 1999. Oppositely imprinted genes p57 Kip2 and Igf2 interact in a mouse model for Beckwith-Wiedemann syndrome. Genes Dev. 13: 3115-3124.
Caudy A.A., Myers M., Hannon G.J., and Hammond S.M., 2002. Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev. 16: 2491-2496.
Chen J., Giovannucci E.L., and Hunter D.J., 1999. MTHFR polymorphism, methyl-replete diets and the risk of colorectal carcinoma and adenoma among U.S. men and women: An example of gene-environment interactions in colorectal tumorigenesis. J.Nutr. 129: S560-S564.
Chen W.G., Chang Q., Lin Y., MeissnerA., West A. E., Griffith E.C., Jaenisch R., and Greenberg M.E., 2003. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302: 885-889.
Chen Z., Karaplis A.C., Ackerman S.L., Pogribny LP, Melnyk S., Lussier-Cacan S., Chen M.F., Pai A., John S.W., Smith R.S., et al., 2001. Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum. Mol. Genet. 10: 433-443.
Chrivia J.C., Kwok R.P., Lamb N., Hagiwara M., Montminy M.R., and Goodman R.H., 1993. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365: 855-859.
Coffee B., Zhang E, Warren S.T., and Reines D., 1999. Acetylated histones are associated with FMR1 in normal but not fragile X-syndrome cells (erratum Nat. Genet. 22: 209 [1999]). Nat. Genet. 22: 98-101
Collins A.L., Levenson J.M., Vilaythong A.P., Richman R.D., Armstrong L., Noebels J.L., Sweatt J.D.. andZoghbi H.Y., 2004. Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum. Mol. Genet. 13: 2679-2689.
Cooney C.A., 1993. Are somatic cells inherently deficient in methylation metabolism? A proposed mechanism for DNA methylation loss, senescence and aging. Growth Dev. Aging 57: 261-273.
CooperW.N., LuhanaA., EvansG.A., RazaH., Haire A.C., Gmndy R., Bowdin S.C., Riccio A., Sebastio G., Bliek J., et al., 2005. Molecular subtypes and phenotypic expression of Beckwith-Wiedemann syndrome. Eur. J. Hum. Genet. 13: 1025-1032.
Couvert P., Bienvenu T., AquavivaC., Poirier K., Moraine C., Gen-drot C., Verloes A., Andres C., Le Fevre A.C., Souville I., et al.. 2001. MECP2 is highly mutated in X-linked mental retardation. Hum. Mol. Genet. 10: 941-946.
Cox G.F., Burger J., Lip V., Mau U.A., Sperling K., Wu B.L., and Horsthemke B., 2002. Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am. J. Hum. Genet. 71: 162-164
Curtin P., Pirastu M., Kan Y.W., Gobert-Jones J.A., Stephens A.D., and Lehmann H., 1985. A distant gene deletion affects p-globin gene function in an atypical y (^-thalassemia. J.Clin. Invest. 76: 1554-1558.
Darnell J.C., Jensen K.B., Jin P., Brown V., Warren S.T., and Darnell R.B., 2001. Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function. Cell 107: 489-499.
Darnell J.C., Fraser C.E., Mostovetsky O., Stefani G., Jones T.A., Eddy S.R., and Darnell R.B., 2005. Kissing complex RNAs mediate interaction between the Fragile-X mental retardation protein KH2 domain and brain polyribosomes. Genes Dev., 19: 903-918.
DeBaun M.R., Niemitz E.L., and Feinberg A.P., 2003. Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and HI9. Am. J. Hum. Genet. 72: 156-160.
Dennis C., 2003. Epigenetics and disease: Altered states. Nature 421: 686-688.
Ding E, Prints Y., Dhar M.S., Johnson D.K., Gamacho-Montero C., Nicholls R.D., and Francke U., 2005. Lack of Pwcr1/MBII-85 snoRNA is critical for neonatal lethality in Prader-Wlli syndrome mouse models. Mamm. Genome 16: 424-431.
Driscoll M.C., Dobkin C.S., and Alter B.P., 1989. ???-thalassemia due to a de novo mutation deleting the 5’ p-globin gene activation-region hypersensitive sites. Proc. Natl. Acad. Sci. 86: 7470-7474.
Eggermann T, Wollmann H.A., Kuner R., Eggermann K., Enders H., Kaiser P., and Ranke M.B., 1997. Molecular studies in 37 Silver-Russell syndrome patients: Frequency and etiology of uniparental disomy. Hum. Genet. 100: 415-419.
Ehrlich M., 2003. The ICF syndrome, a DNAmethyltransferase 3B deficiency and immunodeficiency disease. Clin. Immunol 109: 17-28.
Ehrlich M., Buchanan K.L., Tsien F., Jiang G., Sun B., Uicker W., Weemaes C.M., Smeets D., Sperling K., Belohradsky B.H., et al., 2001. DNA methyltransferase 3B mutations linked to the ICF syndrome cause dysregulation of lymphogenesis genes. Hum. Mol. Genet. 10: 2917-2931.
Engel E., 1980. A new genetic concept: Uniparental disomy and its potential effect, isodisomy. Am. J. Med. Genet. 6: 137-143.
Fattal-Valevski A., Bassan H., Korman S.H., Lerman-Sagie T., Gutman A., and Harel S., 2000. Methylenetetrahydrofolate reductase deficiency: Importance of early diagnosis./. Child Neurol. 15: 539-543.
Feng Y., Absher D., Eberhart D.E., Brown V., Maker H.E., and Warren S.T., 1997. FMRP associates with polyribosomes as an mRNP, and the I304N mutation of severe fragile X syndrome abolishes this association. Mol Cell 1: 109-118.
Flint J., Thomas K., Micklem G., Raynham H., Clark K., Doggett N.A., King A., and Higgs D.R., 1997. The relationship between chromosome structure and function at a human telomeric region. Nat. Genet. 15: 252-257.
Forrester W.C., Epner E., Driscoll M.C., Enver T., Brice M., Papa-yannopoulouT., andGroudine M., 1990. A deletion of the human beta-globin locus activation region causes a major alteration in chromatin structure and replication across the entire beta-globin locus. Genes Dev. 4: 1637-1649.
Fraga M.E., Ballestar E., Paz M.E., Ropero S., Setien E., Ball-estar M.L., Heine-Suner D., Cigudosa J.C., Urioste M., Benitez J., et al., 2005. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. 102: 10604-10609.
Gabellini D., Green M.R., and Tupler R., 2002. Inappropriate gene activation in FSHD: A repressor complex binds a chromosomal repeat deleted in dystrophic muscle. Cell 110: 339-348.
Gibbons R.J., Picketts D.J., Villard L., and Higgs D.R., 1995. Mutations in a putative global transcriptional regulator cause X-linked mental retardation with alpha-thalassemia (ATR-X syndrome). Cell 80: 837-845.
Gibbons R.J., Pellagatti A., Garrick D., Wood W.G., Malik N., Ayyub H., Langford C., Boultwood J.. Wainscoat J.S., and Higgs D.R., 2003. Identification of acquired somatic mutations in the gene encoding chromatin-remodeling factor ATRX in the a-thalassemia myelodysplasia syndrome (ATMDS). Nat. Genet. 34: 446-449.
Gicquel C., Rossignol S., Cabrol S., Houang M., Steunou V., Barbu V., Danton R., Thibaud N., Le Merrer M., Burglen L., et al., 2005. Epimutation of the telomeric imprinting center region on chromosome llpl5 in Silver-Russell syndrome. Nat. Genet. 37: 1003-1007.
Gowher H. and Jeltsch A., 2002. Molecular enzymology of the catalytic domains of the Dnmt3a and Dnmt3b DNA methyl-transferases. J. Biol. Chem. 277: 20409-20414.
Goyette P., Sumner J.S., Milos R., Duncan A.M., Rosenblatt D.S., Matthews R.G., and Rozen R., 1994. Human methylenetetrahydrofolate reductase: Isolation of cDNA, mapping and mutation identification. Nat. Genet. 7: 195-200.
Grosveld E., 1999. Activation by locus control regions? Curr. Opin. Genet. Dev. 9: 152-157.
Hagberg B.. Aicardi J., Dias K., and Ramos O., 1983. A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett’s syndrome: Report of 35 cases. Ann. Neurol. 14: 471-479.
Hagerman P.J. and Hagerman R.J., 2004. The fragile-X premutation: A maturing perspective. Am. J. Hum. Genet. 74: 805-816.
Hagerman R.J., Van Housen K., Smith A.C., and McGavran L., 1984. Consideration of connective tissue dysfunction in the fragile X syndrome. Am. J. Med. Genet. 17: 111-121.
Handa V., Saha T., and Usdin K., 2003. The fragile X syndrome repeats form RNA hairpins that do not activate the interferon-inducible protein kinase, PKR, but are cut by Dicer. Nucleic Acids Res. 31: 6243-6248.
Hansen R.S., Wijmenga C., Luo P., Stanek A.M., Canfield T.K., Weemaes CM., and Gartler S.M., 1999. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc. Natl. Acad. Sci. 96: 14412-14417.
Harikrishnan K.N., Chow M.Z., Baker E.K., Pal S., Bassal S., Bra-sacchio D., Wang L.. Craig J.M., Jones PL., Sif S., and El-Osta A., 2005. Brahma links the SWI/SNF chromatin-remodeling complex with MeCP2-dependent transcriptional silencing. Nat. Genet. 37: 254-264.
Hark A.T., Schoenherr C.J., Katz D.J., Ingram R.S., Levorse J.M., andTilghman S.M., 2000. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405: 486-489.
Harrison C.J., Jack E.M., Allen T.D., and Harris R., 1983. The fragile X: A scanning electron microscope study. /. Med. Genet., 20: 280-285.
Hasegawa T., Hara M., Ando M., Osawa M., Fukuyama Y., Taka-hashi M., and Yamada K., 1984. Cytogenetic studies of familial Prader-Willi syndrome. Hum. Genet. 65: 325-330.
Hayward B.E., Kamiya M., Strain L., Moran V., Campbell R., Hayashizaki Y, and Bonthron D.T., 1998. The human GNAS1 gene is imprinted and encodes distinct paternally and biallelically expressed G proteins. Proc. Natl. Acad. Sci. 95: 10038-10043.
Henry I., Bonaiti-Pellie C., Chehensse V., Beldjord C, Schwartz C, Utermann G., and Junien C., 1991. Uniparental paternal disomy in a genetic cancer-predisposing syndrome. Nature 351: 665-667.
Hoal-van Helden E.G. and van Helden P.D., 1989. Age-related methylation changes in DNA may reflect the proliferative pc -tential of organs. Mutat. Res. 219: 263-266.
Читать дальшеИнтервал:
Закладка: