Чарльз Эллис - Эпигенетика

Тут можно читать онлайн Чарльз Эллис - Эпигенетика - бесплатно полную версию книги (целиком) без сокращений. Жанр: Биология, издательство Техносфера, год 2010. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Эпигенетика
  • Автор:
  • Жанр:
  • Издательство:
    Техносфера
  • Год:
    2010
  • Город:
    Москва
  • ISBN:
    978-5-94836-257-1
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Чарльз Эллис - Эпигенетика краткое содержание

Эпигенетика - описание и краткое содержание, автор Чарльз Эллис, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Издание осуществлено при финансовой поддержке Российского Фонда Фундаментальных Исследований по проекту № 09-08-07118.
Книга ярко и наглядно повествует о новой науке общебиологического значения — эпигенетике, а также об ее отдельных областях. В издании представлено описание разных эпигенетических сигналов и механизмов их реализации, а также собственно феномен, история и концепции эпигенетики, ее отдельные механизмы и пути реализации эпигенетических сигналов в клетке. Авторы различных глав данной книги — ведущие в мире специалисты в области эпигенетики, являющиеся, как правило, и основоположниками ее отдельных областей.
Издание будет полезно широкому кругу читателей, интересующихся коренными проблемами живого мира, сущности жизни и молекулярных механизмов ее проявления.
По формирующейся традиции современной российской научной литературы, оригинальное русскоязычное печатное издание неопрятно переведено, отвратительно вычитано и содержит большое количество ошибок, начиная с обложки. Чарльз Дэвид Эллис указан как С. Д. Эллис.

Эпигенетика - читать онлайн бесплатно полную версию (весь текст целиком)

Эпигенетика - читать книгу онлайн бесплатно, автор Чарльз Эллис
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Petrij E., Giles R.H., Dauwerse H.G., Sans J.J., Hennekam R.C., Masuno M., Tommerup N., van Ommen G J., Goodman R.H., Peters D.J., et al., 1995. Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 376: 348-351.

Petroms A., 2004. The origin of schizophrenia: Genetic thesis, epigenetic antithesis, and resolving synthesis. Biol. Psychiatry 55: 965-970.

Picketts D.J., Higgs D.R., Bachoo S., Blake D.J., Quarrell O.W., and Gibbons R.J., 1996. ATRX encodes a novel member of the SNF2 family of proteins: Mutations point to a common mechanism underlying the ATR-X syndrome. Hum. Mol. Genet. 5: 1899-1907.

Pieretti M., Zhang E., Fu Y.-H., Warren S.T., Oostra B.A., Caskey C.T., and Nelson D. L., 1991. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 66: 817-822.

Ping A.J., Reeve A.E., Law D.J., Young M.R., Boehnke M., and Feinberg A.P., 1989. Genetic linkage of Beckwith-Wiedemann syndrome to 1 lpl5. Am. J. Hum. Genet. 44: 720-773.

Prawitt D., Enklaar T., Gartner-Rupprecht B., Spangenberg C., Oswald M., Lausch E., Schmidfke P., Reutzel D., Fees S., Lucito R., et al., 2005. Microdeletion of target sites for insulator protein CTCF in a chromosome 1 lpl5 imprinting center in Beckwith-Wiedemann syndrome and Wilms’ tumor. Proc. Natl. Acad. Sci. 102: 4085-4090.

Rampersaud G.C., Kauwell G.P., Hutson A.D.. Cerda J.J., and Bailey L.B., 2000. Genomic DNA methylation decreases in response to moderate folate depletion in elderly women. Am. J. Clin.Nutr. 72: 998-1003.

Reik W., 1989. Genomic imprinting and genetic disorders in man. Trends Genet. 5: 331-336.

Reynolds E.H., Carney M.W., and Toone B.K., 1984. Methylation and mood. Lancet 2: 196-198.

Richards B.W., Sylvester P.E., and BrookerC., 1981. Fragile X-linked mental retardation: The Martin-Bell syndrome. J. Merit. Defic. Res. 25: 253-256.

Roelfsema J.H., White S.J., Ariyurek Y., Bartholdi D., Niedrist D., Papadia E., Bacino C.A., den Dunnen J.T., van Ommen G.J., Breuning M.H., et al., 2005. Genetic heterogeneity in Rubinstein-Taybi syndrome: Mutations in both the CBP and EP300 genes cause disease. Am. J. Hum. Genet. 76: 572-580.

Rougeulle C., Cardoso C., Fontes M., Colleaux L., and Lalande M., 1998. An imprinted antisense RNA overlaps UBE3A and a second maternally expressed transcript. Mat Genet., 19: 15-16.

Rozen R., 1996. Molecular genetics of methylenetetrahydrofolate reductase deficiency. /. Inherit. Metab. Dis., 19: 589-594.

Runte M., Varon R., Horn D., Horsthemke B., and Buiting K., 2005. Exclusion of the C/D box snoRNA gene cluster HBII-52 from a major role in Prader-Willi syndrome. Hum. Genet. 116: 228-230.

Schimke R.N., Horton W.A., and King C.R., 1971. Chondroitin-6-sulphaturia, defective cellular immunity, and nephrotic syndrome. Lancet 1: 1088-1089.

Schule B., Albalwi M., Northrop E., Francis D.L., Rowell M., Slater H.R., Gardner R.J., and Francke U., 2005. Molecular breakpoint cloning and gene expression studies of a novel translocation t(4; 15)(q27 ;ql 1.2) associated with Prader-Willi syndrome. BMC Med. Genet. 6: 18.

Schwahn B. and Rozen R., 2001. Polymorphisms in the methylenetetrahydrofolate reductase gene: Clinical consequences. Am. J. Pharmacogenomics 1. 189-201.

Shahbazian M.D., Antalffy B., Armstrong D.L., and Zoghbi H.Y., 2002a. Insight into Rett syndrome: MeCP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation. Hum. Mol. Genet. 11: 115-124.

Shahbazian M., Young J., Yuva-Paylor L., Spencer C., Antalffy B., Noebels J., Armstrong D., Paylor R., and Zoghbi H., 2002b. Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron 35: 243-254.

Smeets D.F., Moog U., Weemaes C.M.. Vaes-Peeters G., Merkx G.F., Niehof J.P., and Hamers G., 1994. ICF syndrome: A new case and review of the literature. Hum. Genet. 94: 240-246.

Smeets D.F., Hamel B.C., Nelen M.R., Smeets H.J., Bollen J.H., Smits A.P., Ropers H.H., and van Oost B.A., 1992. Prader-Willi syndrome and Angelman syndrome in cousins from a family with a translocation between chromosomes 6 and 15. A. Engl. J. Med. 326: 807-811.

Smilinich N.J., Day CD., Fitzpatrick G.V., Caldwell G.M., Lossie A.C., Cooper P.R., Smallwood A.C., Joyce J.A., Schofield P.N., Reik W., et al., 1999. A maternally methylated CpG island in KvLQTl is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wedemann syndrome. Proc. Natl. Acad. Sci. 96: 8064-8069.

Spence J.E., Perciaccante R.G., Greig G.M., Willard H.F., Ledbetter D.H., Hejtmancik J.F., Pollack M.S., O’Brien W.E., and Beaudet A.L., 1988. Uniparental disomy as a mechanism for human genetic disease. Am. J. Hum. Genet. 42: 217-226.

Spranger J., Hinkel G.K., Stoss H.. Thoenes W., Wargowski D., and Zepp E., 1991. Schimke immuno-osseous dysplasia: A newly recognized multisystem disease./. Pediatr. 119: 64-72.

Sun F.L., Dean W.L., Kelsey G., Allen N.D., and Reik W., 1997. Transactivation of Igf2 in a mouse model of Beckwith-Wiedemann syndrome. Nature 389: 809-815.

Suter C.M., Martin D.L., and Ward R.L., 2004. Germline epimuta-tion of MLH1 in individuals with multiple cancers. Nat. Genet. 36: 497-501.

Sutherland G.R., 1977. Fragile sites on human chromosomes: Demonstration of their dependence on the type of tissue culture medium. Science, 197: 265-266.

Taha D., Boerkoel C.F., Balfe J.W., Khalifah M., Sloan E.A., Barbar M., Haider A., and Kanaan H., 2004. Fatal lymphoproliferative disorder in a child with Schimke immuno-osseous dysplasia. Am. J. Med. Genet. A 131: 194-199.

Tommerup N., van der Hagen C.B., and Heiberg A., 1992. Tentative assignment of a locus for Rubinstein-Taybi syndrome to 16pl 3.3 by a de novo reciprocal translocation, t(7; 16)(q34;pl3.3). Am. J. Med. Genet. 44: 237-241

Tsai T.E., Jiang Y.H.. Bressler J., Armstrong D.. and Beaudet A.L., 1999. Paternal deletion from Snrpn to Ube3a in the mouse causes hypotonia, growth retardation and partial lethality and provides evidence for a gene contributing to Prader-Willi syndrome. Hum. Mol. Genet. 8: 1357-1364.

Tuck-Muller C.M., Narayan A., Tsien E., Smeets D.F., Sawyer J., Fiala E.S., Sohn O.S., and Ehrlich M., 2000. DNAhypomethyla-tion and unusual chromosome instability in cell lines from ICF syndrome patients. Cytogenet. Cell Genet. 89: 121-128.

Tupler R. and Gabellini D.. 2004. Molecular basis of facioscapulohumeral muscular dystrophy. Cell. Mol. Life Sci. 61: 557-566.

van Deutekom J.C, Wijmenga C., van Tienhoven E.A., Gruter A.M., Hewitt J.E., Padberg G.W., van Ommen G.J., Hofker M.H., and Frants R.R., 1993. FSHD associated DNA rearrangements are due to deletions of integral copies of a 3.2 kb tandemly repeated unit. Hum. Mol. Genet. 2: 2037-2042.

Van Esch H., Bauters M., Ignatius J., Jansen M., Raynaud M., Hollanders K., Lugtenberg D., Bienvenu T., Jensen L.R., Gecz J., et al., 2005. Duplication of the MECP2 region is a frequent cause of severe mental retardation and progressive neurological symptoms in males. Am. J. Hum. Genet. 77: 442-453.

VerkerkA. J.M.H., PierettiM., Sutcliffe J. S., FuY-H., KuhlD.RA., Pizutti A., Reiner O., Richards S., Victoria M.E, Zhang R., et al., 1991. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65: 905-914.

Villard L., Gecz J., Mattel J.F., Fontes M., Saugier-Veber P., Mun-nich A., and Lyonnet S., 1996. XNP mutation in a large family with Juberg-Marsidi syndrome. Nat. Genet. 12: 359-360.

Wan M., Zhao K., Lee S.S., and Francke U., 2001. A/FCP2 truncating mutations cause histone H4 hyperacetylation in Rett syndrome. Hum. Mol. Genet 10: 1085-1092.

Wan M., Lee S.S., Zhang X., Houwink-Manville I., Song H.R., Amir R.E., Budden S., Naidu S., Pereira J.L., Lo I.F., et al., 1999. Rett syndrome and beyond: Recurrent spontaneous and familial MECP2 mutations at CpG hotspots. Am. J. Hum. Genet. 65: 1520-1529.

Warren S.T. and Sherman S.L., 2001. The fragile X syndrome. In The metabolic and molecular bases of inherited disease, 8th edition (ed. C.R. Scriver et al.), vol. 1, pp. 1257-1289. McGraw-Hill, New York.

Waterland R.A. and Jirtle R.L., 2003. Transposable elements: Targets for early nutritional effects on epigenetic gene regulation. Mol. Cell. Biol. 23: 5293-5300.

Weatherall D.J., Clegg M.B., Higgs D.R., and Wood W.G., 2001. The hemoglobinopathies. In The metabolic & molecular bases of inherited disease, 8th edition (ed. C.R. Scriver et al.), pp. 4571-4636. McGraw-Hill, New York.

Weaver I.C., CervoniN., Champagne F.A., D’Alessio A.C., Sharma S., Seckl J.R., Dymov S., Szyf M., and Meaney M.J., 2004. Epigenetic programming by maternal behavior. Nat. Neurosci. 7: 847-854.

Weiler I.J. and Greenough W.T., 1999. Synaptic synthesis of the Fragile X protein: Possible involvement in synapse maturation and elimination. Am. J. Med. Genet. 83: 248-252.

Weksberg R., Smith A.C., Squire J., and Sadowski P., 2003. Beckwith-Wiedemann syndrome demonstrates a role for epigenetic control of normal development. Hum. Mol. Genet. 12: R61-R68

Weksberg R., Nishikawa J., Caluseriu O., Fei Y.L., Shuman C., Wei C., Steele L., Cameron J., Smith A., Ambus I., et al., 2001. Tumor development in the Beckwith-Wiedemann syndrome is associated with a variety of constitutional molecular 1 lpl5 alterations including imprinting defects of KCNQIOTI. Hum. Mol. Genet. 10: 2989-3000.

Weksberg R., Teshima I., Williams B.R., Greenberg C.R., Pueschel S.M., Chemos J.E., Fowlow S.B., Hoyme E., Anderson I.J., Whiteman D.A., et al., 1993. Molecular characterization of cytogenetic alterations associated with the Beckwith-Wiedemann syndrome (BWS) phenotype refines the localization and suggests the gene for BWS is imprinted. Hum. Mol. Genet. 2: 549-556.

Wijmenga C., Hewitt J.E., Sandkuijl L.A., Clark L.N., Wnght T.J., Dauwerse H.G., Gruter A.M., Hofker M.H., Moerer P., Williamson R., et al., 1992. Chromosome 4q DNA rearrangements associated with facioscapulohumeral muscular dystrophy. Nat. Genet. 2: 2 6-30.

Willemsen R., Hoogeveen-Westerveld M., Reis S., Holstege J., Severij-nen L.A., Nieuwenhuizen I.M.. Schrier M., Van Unen L., Tassone E., Hoogeveen A.T., et al., 2003. The FMR1 CGG repeat mouse displays ubiquitin-positive intranuclear neuronal inclusions; implications for the cerebellar tremor/ataxia syndrome. Hum. Mol. Genet. 12: 949-959.

Wolff G.L., Kodell R.L., Moore S.R., and Cooney C.A., 1998. Maternal epigenetics and methyl supplements affect agouti gene expression in A ?? mice. Faseb J. 12: 949-957.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Чарльз Эллис читать все книги автора по порядку

Чарльз Эллис - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Эпигенетика отзывы


Отзывы читателей о книге Эпигенетика, автор: Чарльз Эллис. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x