Бен Орлин - Время переменных. Математический анализ в безумном мире
- Название:Время переменных. Математический анализ в безумном мире
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2021
- Город:Москва
- ISBN:9785001394525
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бен Орлин - Время переменных. Математический анализ в безумном мире краткое содержание
Тема движения времени находит отражение и в названиях частей книги – «Мгновения» и «Вечности», и в ее персонажах – от Шерлока Холмса до Марка Твена и Дэвида Фостера Уоллеса. C присущими ему юмором и изобретательностью Орлин выявляет связи между матанализом, искусством, литературой и любимой собакой по имени Элвис.
Автор нашумевшей «Математики с дурацкими рисунками» и в этой книге ставит своей целью не просто увлечь читателя любимым предметом, но сделать нас более мудрыми и вдумчивыми.
Время переменных. Математический анализ в безумном мире - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Это, как ни странно, квадратный корень из π.
Скопление причудливых символов ( е , π, ∞) немного напоминает мне о тождестве Эйлера e πi + 1 = 0. Таким помешанным на математике ребятам, как я, хочется расцеловать это уравнение от восхищения. Констанс Рид [67] Ко́нстанс Рид – американский историк и популяризатор математики. Наиболее известна как автор биографии Давида Гильберта. – Прим. пер.
называла его «самой знаменитой формулой в математике»; Тед Чанг [68] Тед Чанг – американский писатель-фантаст, в активе которого литературных наград больше, чем написанных им произведений. По образованию является специалистом по компьютерам, в своих книгах затрагивает научную и математическую тематику. – Прим. пер.
описывает «чувство благоговейного восхищения в тот момент, когда прикасаешься к абсолютной истине»; Кит Девлин [69] Кит Девлин – британский математик и популяризатор науки. – Прим. пер.
даже сравнивает уравнение с «сонетом Шекспира, который каким-то образом ухватывает саму сущность любви».

Ничего не могу поделать с собой и задаюсь вопросом: где же восторженные рукоплескания в адрес решения интеграла Гаусса? Я пишу в Twitter:
Мне нравится тождество Эйлера так же, как музыка Beatles – с робким чувством того, что, возможно, они привлекают слишком много внимания.
Но интеграл Гаусса! Посмотрите на эту красоту, ребята! Это Moody Blues [70] The Moody Blues – британская рок-группа, образованная в Бирмингеме в 1964 г., ставшая одним из основателей прогрессивного рока, одна из старейших действующих рок-групп в мире. – Прим. пер.
всех уравнений с е и π!

Это только одна проблема. На самом деле я не знаю, почему эта формула верна.
Мне нравится считать себя любопытным исследователем. Также мне доводится жить с профессиональным математиком, в чьем разуме по полочкам разложено множество знаний, которыми я не обладаю. Но – и в этом парадокс моей семейной жизни – эти точки не соединяются. Я почти никогда не прошу жену чему-то меня научить.
Возможно, у меня просто нет такой привычки. Возможно, асимметрия обучения не согласуется с динамикой брака. Возможно, я менее любопытен, чем мне кажется, или во мне больше глупой гордости. Или, может быть, за время, прошедшее с 2003 г., я перестал быть ребенком, который всегда старается понять смысл любой шутки, и стал взрослым, который притворяется, что и так все понял.
В любом случае, сегодня я спрашиваю.
Тарин улыбается, берет купон со скидкой на крем-сыр и на обратной стороне показывает мне, как решается интеграл Гаусса. Возведите все в квадрат, примените теорему Фубини; переведите в полярные координаты, и – вуаля – результат налицо. Квадратный корень из π.
– Так интеграл неберущийся, – говорю я, – за исключением одного случая, когда он таким не является.
Где-то среди 10 000 ложек затесался один нож.
– О, – выдыхает Тарин, переворачивая купон, – нам не нужен был крем-сыр?
Я встаю, чтобы проверить содержимое холодильника, и это мгновение исчезает в вечности.

Заметки из класса
Когда я впервые задумался о написании этой книги, мне представлялась линейная подача материала – нечто вроде продвинутого курса математического анализа с картинками. Таким был путь, который я прошел, будучи студентом и учителем, единственный известный мне путь, имеющий смысл. Но чем дальше я шел по нему, тем мне было противнее. Мне была нужна дорога из желтого кирпича, с яркими красками и волшебством, а то, что я делал, больше напоминало путь по отделам магазина «ИКЕА». Наконец я понял намек, изменил план и начал собирать истории. Некоторые из них соединяют вводные темы (например, Риманова сумма) с продвинутыми (интеграл Лебега). Отдельные темы (скажем, «Рождение математического анализа») превратились в сквозных героев повествования, снова и снова появляясь как абзацы-камео. Некоторые центральные темы (например, «Ряды Тейлора») исчезли вовсе. То, что я представлял себе как классическую нить жемчуга, превратилось в калейдоскоп.
Очевидно, эта книга не является учебником. Но если вы преподаете математический анализ (или изучаете его), я надеюсь, что она будет вашим верным товарищем. Чтобы помочь в этом, ниже я привожу «стандартную» (более или менее) последовательность тем и соответствующие им истории, а также несколько отдельных педагогических идей.
Пределы: «То, что ветер оставляет после себя» (гл. VIII), «В литературных кругах» (гл. XVI)
От природы я застенчивый человек, который всегда старается занимать промежуточное положение: я слушаю Coldplay, пью латте и всегда начинаю курс математического анализа с пределов. Но работа над этой книгой заставила меня стать более радикальным: теперь я соглашаюсь на совместные действия с теми хулиганами и злоумышленниками, которые принижают пределы. Не само математическое понятие, а, скорее, идею о том, что до того, как познакомиться с производными и интегралами, студенты должны пройти через тщательное изучение локального поведения абстрактных функций вне контекста. В следующий раз, когда я буду преподавать матан, я собираюсь присоединиться к мятежникам и нырнуть сразу в дифференциацию, вернувшись к понятиям сходимости и неразрывности только тогда, когда они естественным образом всплывут в контексте. Это, как я понимаю, исторически верный путь, а то, что было хорошо для Бернулли, будет на пользу и мне.
Касательные: «Шерлок Холмс и неправильный велосипед» (гл. VI)
Хотя я недоволен пределами как педагогической основой, это не мешает мне оставаться большим поклонником связанных с ними философских загадок. Именно поэтому мне нравится задача о касательной, про которую я здесь рассказал. Она дает конкретное значение понятию «мгновенное движение» и вынуждает сравнивать действия без матана с действиями в его рамках.
Определение производной: «Мимолетное вещество времени» (гл. I)
Споры о том, какое определение лучше дать производной, не умолкают. Это наклон касательной? Оптимальная локальная линеаризация? Мгновенный уровень изменения? Я предпочел последний вариант, хотя идея «локальной линеаризации» последует очень скоро, в главе «Когда Миссисипи текла на миллион миль» (гл. V).
Правила дифференцирования: «Зеленоволосая девушка и многомерная улитка» (гл. X); «Посчитаем!» (гл. XV)
Интервал:
Закладка: