Айзек Азимов - Числа: от арифметики до высшей математики

Тут можно читать онлайн Айзек Азимов - Числа: от арифметики до высшей математики - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Эксмо, год 2012. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Числа: от арифметики до высшей математики
  • Автор:
  • Жанр:
  • Издательство:
    Эксмо
  • Год:
    2012
  • Город:
    Москва
  • ISBN:
    978-5-699-52723-6
  • Рейтинг:
    4/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Айзек Азимов - Числа: от арифметики до высшей математики краткое содержание

Числа: от арифметики до высшей математики - описание и краткое содержание, автор Айзек Азимов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Знаменитый фантаст и популяризатор науки сэр Айзек Азимов в этой книге решил окунуть читателя в магию чисел Свой увлекательный рассказ Азимов начинает с древнейших времен, когда человек использовал для вычислений пальцы, затем знакомит нас со счетами, а также с историей возникновения операций сложения, вычитания, умножения и деления Шаг за шагом, от простого к сложному, используя занимательные примеры, автор ведет нас тем же путем, которым шло человечество, совершенствуя свои навыки в математике.

Числа: от арифметики до высшей математики - читать онлайн бесплатно полную версию (весь текст целиком)

Числа: от арифметики до высшей математики - читать книгу онлайн бесплатно, автор Айзек Азимов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Казалось бы, теперь грекам осталось сделать совсем немного. Надо было только найти такую дробь, которая являлась бы √2, а потом представить ее в виде соотношения целых чисел, и можно праздновать победу. Но все оказалось гораздо сложнее.

Дроби, которых не существует

Ранее в этой главе мы с вами показали, что 1 2/ 5близко к √2. Если бы оно точно равнялось √2, задача была бы решена. Тогда соотношение 1 2/ 5/1, которое можно превратить в соотношение целых чисел 7/5, умножив верхнюю и нижнюю части дроби на 5, и было бы искомой величиной.

Но, к сожалению, 1 2/ 5| не является точной величиной √2. Более точный ответ, 1 41/ 100, дает нам соотношение 141/100. Еще большей точности мы достигаем, когда приравниваем √2 к 1 207/ 500. В этом случае соотношение в целых числах будет равно 707/500. Но и 1 207/ 500 не является точным значением корня квадратного из 2. Греческие математики потратили массу времени и сил, чтобы вычислить точное значение √2, но это им так и не удалось. Они не смогли представить соотношение √2/1 в виде соотношения целых чисел.

Наконец, великий греческий математик Евклид доказал, что, как бы ни увеличивалась точность подсчетов, получить точное значение √2 невозможно. Не существует такой дроби, которая, будучи возведена в квадрат, даст в результате 2. Говорят, что первым к этому заключению пришел Пифагор, но этот необъяснимый факт настолько поразил ученого, что он поклялся сам и взял со своих учеников клятву хранить это открытие в тайне. Однако, возможно, эти сведения не соответствуют действительности.

Но если число √2/1 не может быть представлено в виде соотношения целых чисел, то и никакая дробь, содержащая √2, например √2/2 или 4/√2, также не может быть представлена в виде соотношения целых чисел, поскольку все такие дроби могут быть преобразованы в √2/1, умноженное на какое нибудь число. Так, √2/2 = √2/1 × 1/2. Или √2/1 × 2 = 2√2/1, что можно преобразовать, умножив верхнюю и нижнюю части на √2, и получить 4/√2. (Не следует забывать, что независимо от того, что представляет собой число √2 , если мы умножим его на √2, то получим 2.)

Поскольку число √2 нельзя представить в виде соотношения целых чисел, оно получило название иррационального числа. С другой стороны, все числа, которые можно представить в виде соотношения целых чисел, называются рациональными. Рациональными являются все целые и дробные числа, как положительные, так и отрицательные.

Как оказалось, большинство квадратных корней являются иррациональными числами. Рациональные квадратные корни есть только у тех чисел, входящих в ряд квадратных чисел, о которых мы говорили в шестой главе. Эти числа называются также идеальными квадратами. Рациональными числами являются также дроби, составленные из этих идеальных квадратов. Например, √(1 7/ 9) является рациональным числом, так как √(1 7/ 9) = √16/√9 = 4/3 или 1 1/ 3(4 — это корень квадратный из 16, а 3 — корень квадратный из 9).

Тот факт, что многие квадратные корни являются иррациональными числами, нисколько не умаляет их значения, в частности, число √2 очень часто используется в различных инженерных и научных расчетах. Это число можно вычислить с той точностью, которая необходима в каждом конкретном случае. Способ вычисления был описан ранее в этой главе, и вы можете получить это число с таким количеством знаков после запятой, на которое у вас хватит терпения.

Например, число √2 можно определить с точностью до шести десятичных знаков: √2 = 1,414214. Эта величина не очень сильно отличается от истинного значения, поскольку 1,414214 × 1,414214 = 2,000001237796. Этот ответ отличается от 2 на величину, едва превышающую одну миллионную. Поэтому значение √2, равное 1,414214, считается вполне приемлемым для решения большинства практических задач. В том случае, когда требуется большая точность, нетрудно получить столько значащих цифр после запятой, сколько необходимо в данном случае.

Однако если вы проявите редкостное упрямство и попробуете извлекать квадратный корень из числа 2 до тех пор, пока не добьетесь точного результата, вы никогда не закончите своей работы. Это бесконечный процесс. Сколько бы десятичных знаков после запятой вы ни получили, всегда останется еще несколько.

Этот факт может поразить вас так же сильно, как и превращение 1/3 в бесконечную десятичную дробь 0,333333333… и так бесконечно или превращение 1/7 в 0,142857142857142857… и так далее бесконечно. На первый взгляд может показаться, что эти бесконечные десятичные дроби и иррациональные квадратные корни — это явления одного порядка, но это совсем не так. Ведь у этих бесконечных дробей есть дробный эквивалент, в то время как у √2 такого эквивалента нет. А почему, собственно? Дело в том, что десятичным эквивалентом 1/3 и 1/7, а также бесконечного числа других дробей являются периодические бесконечные дроби.

В то же время десятичный эквивалент √2 является непериодической дробью. Это утверждение справедливо также для любого иррационального числа.

Проблема заключается в том, что любая десятичная дробь, которая является приближенным значением корня квадратного из 2, представляет собой непериодическую дробь. Как далеко мы ни продвинемся в расчетах, любая дробь, которую мы получим, будет непериодической.

Представьте себе дробь с огромным количеством непериодических цифр после запятой. Если вдруг после миллионной цифры вся последовательность десятичных знаков повторится, значит, десятичная дробь — периодическая и для нее существует эквивалент в виде отношения целых чисел. Если у дроби с огромным количеством (миллиарды или миллионы) непериодических десятичных знаков в какой-то момент появляется бесконечная серия повторяющихся цифр, например …55555555555…, это также означает, что данная дробь — периодическая и для нее существует эквивалент в виде отношения целых чисел.

Однако в случае иррациональных чисел их десятичные эквиваленты полностью непериодические и не могут превратиться в периодические.

(Разумеется, вы можете задать мне следующий вопрос: «А кто может знать и сказать наверняка, что происходит с дробью, скажем, после триллионного знака? Кто может гарантировать, что дробь не станет периодической?» Существуют способы неопровержимо доказать, что иррациональные числа являются непериодическими, но такие доказательства требуют сложного математического аппарата, поэтому мы не сможем разобрать их в нашей книжке. Но если бы вдруг оказалось, что иррациональное число становится периодической дробью, это означало бы полный крах основ математических наук. И на самом деле это вряд ли возможно.)

Существование дробей

Теперь рассмотрим следующее выражение: (2 4) 2. Такая запись означает, что 2 4следует возвести в квадрат. Число 2 4— это 2 × 2 × 2 × 2, или 16. Далее, 16 в квадрате — это 16 × 16, или 256. Таким образом, (2 4) 2= 256. Но 256 — это также 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2, или 2 8. Следовательно, (2 4) 2= 2 8.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Айзек Азимов читать все книги автора по порядку

Айзек Азимов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Числа: от арифметики до высшей математики отзывы


Отзывы читателей о книге Числа: от арифметики до высшей математики, автор: Айзек Азимов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x