Бенуа Мандельброт - Фрактальная геометрия природы
- Название:Фрактальная геометрия природы
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2002
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.
Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Отклонения вызваны, по большей части, небольшой асимметрией в распределении. Согласно этому важному наблюдению, должны существовать асимметричные варианты устойчивого распределения.
На графике отображены следующие серии данных (положительные и отрицательные значения X рассматривались в каждом случае отдельно):
а) X= ln Z(t+1день)− ln Z(t) , где Z - ежедневный курс на момент закрытия Нью-Йоркской хлопковой биржи, 1900 – 1905 гг. (Данные предоставлены Министерством сельского хозяйства США.)
б) X= ln Z(t+1день)− ln Z(t) , где Z - индекс ежедневных цен на хлопок на различных биржах США на момент закрытия, 1944 – 1958 гг. (данные предоставлены Хендриком С. Хаутаккером.)
в) X= ln Z(t+1месяц)− ln Z(t) , где Z - курс на момент закрытия Нью-Йоркской хлопковой биржи 15 числа каждого месяца, 1880 – 1940 гг. (Данные предоставлены Министерством сельского хозяйства США.)
ПРОГНОЗИРУЮЩАЯ СИЛА МОДЕЛИ
Прогнозирующая сила скейлингового принципа изменения цен базируется на одном важном открытии, которое описано ниже. Для начала построим распределение среднесуточных изменений цен за пятилетний период со средней изменчивостью цен. Экстраполируя теперь это распределение на среднемесячные изменения цен, мы обнаружим, что его график проходит как раз через точки, соответствующие всевозможным экономическим спадам, депрессии и т.д. Этот график учитывает все наиболее значительные события, произошедшие за почти столетний период в истории весьма непостоянного рынка товаров первой необходимости.
В частности (см. рис. 470), процесс, управляющий изменением цен на хлопок, остается приблизительно стационарным на протяжении относительно долгого рассматриваемого периода. Это поразительное открытие лучше всего представить в два этапа.
Первый критерий стационарности.Из рис. 470 видно, что и аналитическая форма процесса изменения цен, и значение D остаются неизменными. Бесспорно, стоимость денег и прочие подобные вещи претерпели значительные изменения, однако общие тенденции пренебрежимо малы по сравнению с флуктуациями, с которыми мы здесь сталкиваемся.
Второй критерий стационарности: исправление ошибки, присутствующей на рисунке 470.Необходимость введения второго критерия стационарности возникла благодаря счастливой случайности. Кривые a + и b + (равно как и a − и b − ) на рисунке смещены относительно друг друга по горизонтали. Поскольку смещение в дважды логарифмических координатах соответствует в естественных координатах изменению масштаба, это расхождение привело меня в [341] к тому, что я почти согласился с мнением экономистов, полагавших, что в 1900 г. распределение ценовых изменений было иным, нежели в 1950. Я считал тогда, что распределение сохранило свою форму, но его масштаб изменился (уменьшился, если быть точным).
Однако, как оказалось, в этой моей уступке общественному мнению не было никакой необходимости. Дело в том, что данные, по которым строились кривые a + и a − , были неверно прочитаны (см. [368]). После внесения необходимых поправок кривые a + и a − оказались практически тождественны кривым b + и b − .
Не буду отрицать: на первый взгляд, приведенные на рисунке данные создают впечатление значительной нестационарности. В действительности это не так, потому что упомянутое первое впечатление будет, скорее всего, сформировано на основе убеждения, что описываемый процесс имеет гауссову природу. Я предлагаю альтернативу нестационарному гауссову процессу – и этой альтернативой является процесс устойчивый и стационарный, но совершенно не гауссов.
ВЫВОД
Насколько мне известно, ни одна экономическая модель еще не давала прогнозов, сравнимых по успешности с моими.
38 МАСШТАБНАЯ ИНВАРИАНТНОСТЬ И СТЕПЕННЫЕ ЗАКОНЫ БЕЗ ГЕОМЕТРИИ
Если когда-либо будут написаны монографии или даже учебники по фракталам, то их авторы, вероятно, поместят главы, посвященные рассмотрению случайных геометрических фигур (весьма деликатный в математическом смысле предмет), после более простых глав, описывающих случайные функции, а начинаться эти книги будут, конечно же, со случайных величин. В настоящем эссе мы поступили иначе, сразу окунувшись с головой в наиболее сложную тему, поскольку тема эта представляет наибольший интерес и дает наибольший простор для развития геометрической интуиции.
Ближайшие родственники фракталов – гиперболические распределения вероятностей. В предыдущих главах мы встречали немало примеров их применения, начиная с гиперболических функций Nr(U>u) . Однако многое осталось недосказанным. Эта глава начинается с общих замечаний о предмете, а затем мы рассмотрим некоторые лингвистические и экономические феномены, относительно которых имеются многочисленные и убедительные эмпирические свидетельства, очень хорошо описываемые гиперболическими законами. Рассуждения в обоих случаях одинаковы и представляют масштабную инвариантность и размерность подобия в совершенно «развоплощенном» виде.
Приводимый здесь пример из лингвистики составлял тему моей первой статьи (см. главу 42). Благодаря ему я познакомился с некоторыми полезными приемами – весьма прямолинейными, но в то же время достаточно универсальными. У этого лингвистического примера имеется также и термодинамический аспект, связанный с моим недавним открытием математического аналога отрицательной температуры.
О ГИПЕРБОЛИЧЕСКИХ РАСПРЕДЕЛЕНИЯХ
Согласно определению, которое хорошо нам известно, случайная величина (с. в.) U называется гиперболической, если P(u)=Pr(U>u)=Fu −D . Довольно странное, надо сказать, определение, ведь так при любом конечном префакторе σ получается, что P(0)=∞ , что выглядит сущей нелепицей и определенно указывает на то, что здесь требуется некое особое отношение – как нам хорошо известно, так оно и есть. В главе 12, например, мы видели, что, когда генератор Коха включает в себя остров, предельная кривая будет включать в себя бесконечное множество островов, причем количество таких, чья площадь превышает некоторую величину a , будет равно Nr(A>a)=Fa −B . Расположим их в порядке уменьшения площади (острова с одинаковой площадью можно располагать в произвольном порядке). Выбрать один такой остров случайным образом с равномерным распределением – значит выбрать случайным образом один порядковый номер из списка островов. Если нам это удастся, то мы с полным правом сможем заменить Nr(A>a) на Pr(A>a) . Однако в действительности порядковый номер острова представляет собой целое положительное число, а нам известно, что выбрать случайным образом целое положительное число невозможно.
Читать дальшеИнтервал:
Закладка: