Бенуа Мандельброт - Фрактальная геометрия природы

Тут можно читать онлайн Бенуа Мандельброт - Фрактальная геометрия природы - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание

Фрактальная геометрия природы - описание и краткое содержание, автор Бенуа Мандельброт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки.
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.

Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)

Фрактальная геометрия природы - читать книгу онлайн бесплатно, автор Бенуа Мандельброт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Шеффер [510] исходит из допущения, что особенности действительно имеют место, и показывает, что они непременно удовлетворяют следующим теоремам. Во-первых, фрактальная размерность их проекции на временную ось не превышает 1/2. Во-вторых, их проекция на пространственные координаты представляет собой в лучшем случае фрактал с размерностью 1.

Впоследствии обнаружилось, что первый из вышеприведенных результатов является следствием одного замечания в старой и довольно известной работе Лере [301], которая внезапно обрывается после получения формального неравенства, из которого как раз и следует первая теорема Шеффера. Хотя вряд ли ее можно назвать следствием — скорее, просто новая формулировка. Однако подобает ли нам относиться к этому свысока? Перенос чужих выводов в терминологически более изящную форму редко (и небезосновательно) расценивается как научное достижение, однако мне кажется, что для данного случая следует сделать исключение. Упомянутое неравенство из теоремы Лере было с практической точки зрения почти бесполезным, пока следствие Мандельброта-Шеффера не представило его миру в должной перспективе.

Все случаи применения размерности Хаусдорфа-Безиковича (во многом, кстати, шаблонные) в последних работах по уравнениям Навье-Стокса могут быть непосредственно выведены из моих предположений.

ОСОБЕННОСТИ ДРУГИХ ФИЗИЧЕСКИХ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Другие явления, которые, как мне представляется, следует описывать с помощью масштабно-инвариантных фракталов, не имеют ничего общего ни с Эйлером, ни с Навье и Стоксом. Например, распределение галактик определяется уравнениями гравитации. Однако аргумент о сохранении симметрии применим ко всем масштабно-инвариантным уравнениям. В сущности, довольно туманное замечание Лапласа (см. раздел МАСШТАБНАЯ ИНВАРИАНТНОСТЬ ПО ЛЕЙБНИЦУ И ЛАПЛАСУ, глава 41) можно теперь (задним числом!) истолковать так, будто оно намекает на тему главы 9.

В более общем смысле, фрактальный характер особенностей можно, скорее всего, проследить в неких обобщенных признаках, общих для самых различных уравнений математической физики. Может, это просто какой-то очень широкий род нелинейности? Мы еще вернемся к этому вопросу в главе 20 — правда, в несколько иной терминологии.

IV МАСШТАБНО-ИНВАРИАНТНЫЕ ФРАКТАЛЫ

12 СООТНОШЕНИЯ МЕЖДУ ДЛИНОЙ, ПЛОЩАДЬЮ И ОБЪЕМОМ

В главах 12 и 13 мы подробно рассмотрим свойства фрактальной размерности на примере многочисленных «мини-прецедентов» различной важности и возрастающей сложности, а в главе 14 покажем, что фрактальная геометрия непременно включает в себя различные концепции за пределами фрактальной размерности.

В настоящей главе мы опишем и применим к различным конкретным случаям фрактальные аналоги, которые я разработал специально для определенных стандартных выводов евклидовой геометрии. Их можно рассматривать как параллельные фрактальным отношениям вида M(R)∝R D , полученным в главах 6, 8 и 9.

СТАНДАРТНЫЙ АНАЛИЗ РАЗМЕРНОСТЕЙ

Из того, что длина окружности радиуса R равна 2πR , а площадь диска, ограниченного этой окружностью, составляет πR 2 , следует, что

(длина)=2π 1/2 (площадь) 1/2 .

Соответствующее соотношение для квадрата имеет вид

(длина)=4(площадь) 1/2 .

Вообще в любом семействе плоских фигур, геометрически подобных, но имеющих различные линейные размеры, отношение (длина)/(площадь) 1/2 представляет собой число, полностью определяемое общей для семейства формой.

Пространство ( E=3 ) предоставляет нам новые альтернативные способы оценки линейной протяженности фигуры с помощью (длины) , (площади) 1/2 и (объема) 1/3 , причем отношение между любыми двумя из этих трех величин является параметром фигуры, независимым от единиц измерения.

Эквивалентность различных линейных протяженностей во многих случаях оказывается очень полезной. А ее расширение (включающее время и массу) лежит в основе мощной методики, известной физикам как «анализ размерностей». (Желающим подробнее ознакомиться с основными его особенностями рекомендую прочесть [37].)

ПАРАДОКСАЛЬНЫЕ РАЗМЕРНОСТИ

Однако нам известно множество примеров (и их количество неуклонно растет), демонстрирующих, к нашему вящему разочарованию, полное отсутствие эквивалентности между альтернативными линейными протяженностями. Например, мозг млекопитающего характеризуется соотношением

(объем) 1/3∝(площадь) 1/D ,

где D~3 значительно больше ожидаемого значения 2. Измерения длины главной реки бассейна (см. [186]) показывают, что

(площадь) 1/2∝(длина) 1/D ,

где D определенно больше ожидаемого значения 1. В ранних исследованиях этот последний результат объяснялся тем, что речные бассейны не самоподобны — большие бассейны имеют вытянутую форму, а маленькие несколько сплюснуты. К сожалению, такая интерпретация не согласуется с экспериментальными данными.

Ниже приведено мое объяснение этих и других похожих наблюдений с более убедительных позиций, и моим инструментом будет новое-фрактальное-соотношение между длиной, площадью и объемом.

ФРАКТАЛЬНОЕ СООТНОШЕНИЕ МЕЖДУ ДЛИНОЙ И ПЛОЩАДЬЮ

Для большей наглядности рассмотрим совокупность геометрически подобных островов с фрактальными береговыми линиями размерности D>1 . Стандартное отношение (длина)/(площадь) 1/2 в этом контексте стремится к бесконечности, но я намерен показать, что оно имеет достойный фрактальный аналог, вполне пригодный для каких угодно практических целей. Определим длину побережья, измеренную с шагом длины G , как ( G -длину), а площадь острова, измеренную в единицах G 2 — как ( G -площадь). Учитывая, что зависимость ( G -длины) от G нестандартна, в отличие от стандартной зависимости ( G -площади) от G , мы можем записать следующее обобщенное отношение:

(G−длина) 1/D /(G−площадь) 1/2 .

Я утверждаю, что значение этого отношения одинаково для любого из наших самоподобных островов.

В результате мы имеем два различных способа оценки линейной протяженности каждого острова в единицах G : стандартное выражение (G−площадь) 1/2 и нестандартное (G−длина) 1/D .

Характерная особенность данного подхода заключается в том, что при смене длины шага с G на G' мы получим другое отношение альтернативных линейных протяженностей:

(G'−длина) 1/D /(G'−площадь) 1/2 ,

которое отличается от исходного на коэффициент (G'/G) 1/D−1 .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Бенуа Мандельброт читать все книги автора по порядку

Бенуа Мандельброт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Фрактальная геометрия природы отзывы


Отзывы читателей о книге Фрактальная геометрия природы, автор: Бенуа Мандельброт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x