Бенуа Мандельброт - Фрактальная геометрия природы
- Название:Фрактальная геометрия природы
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2002
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.
Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
К решению этой задачи мы подойдем кружным путем, начав с нечетко определенной концепции турбулентности и рассмотрев одномерные данные о скорости в точке. Приблизительный анализ таких данных может быть проиллюстрирован движениями центра тяжести большого самолета. Всякое отклонение самолета от своего пути указывает на наличие в атмосфере определенных областей с сильным рассеянием. Маленький самолет может послужить более чувствительным индикатором: он «чувствует» такие турбулентные потоки, которые никак не влияют на движение большого самолета, а каждый удар, претерпеваемый большим самолетом, воспринимается маленьким как целая серия более слабых ударов. Таким образом, если тщательно рассмотреть область сильного рассеяния в поперечном сечении, то станут ясно видны ламинарные включения, а при увеличении разрешающей способности анализа станут доступны и более мелкие включения.
Каждый этап требует переопределения того, что есть турбулентность. Понятие турбулентного интервала данных приобретает смысл, если понимать его как «интервал данных, который нельзя охарактеризовать полным отсутствием турбулентности». С другой стороны, более строгое понятие целиком турбулентного интервала данных представляется лишенным видимого смысла. По мере прохождения последовательных этапов анализа мы получаем все более ярко выраженную турбулентность на протяжении все меньшей доли от всего интервала данных. Объем носителя рассеяния, судя по всему, сокращается. Нашей следующей задачей будет построение модели этого носителя.
РОЛЬ САМОПОДОБНЫХ ФРАКТАЛОВ
Как я уже говорил, меня не удивляет тот факт, что на сегодняшний день по-настоящему исследованы очень немногие геометрические аспекты турбулентности, так как ученые имели в своем распоряжении только евклидовы методы. Чтобы избежать накладываемых ими ограничений, многие использовали в своих описаниях доевклидову терминологию. Например, в трудах по перемежаемости наблюдается необычно частое употребление таких «терминов», как пятнистый и комковатый, а Бэтчелор и Таунсенд [19] полагают, что «существует четыре возможных категории фигур: пузыри, пруты, бруски и ленты». Некоторые лекторы используют также (правда, чаще в устной речи) такие термины, как фасоль, спагетти и салат — образная терминология, не скрывающая мощи стоящей за ней геометрии.
Что касается тех исследований, которые я вел с 1964 г. и впервые представил на Киотском симпозиуме 1966 г. (см. [353]), то они усовершенствуют классический геометрический инструментарий добавлением в него самоподобных фракталов.
Отстаивать использование фракталов — шаг довольно новый и радикальный, однако обязать фракталы турбулентности быть самоподобными вполне укладывается в ортодоксальные рамки, поскольку само понятие самоподобия было впервые введено в обиход для описания турбулентности. Пионером в этой области выступил Льюис Фрай Ричардсон, с которым мы познакомились в главе 5. В 1926 г. [491] Ричардсон ввел концепцию иерархии вихрей, связанных каскадным процессом. (См. также главу 40.)
Кроме того, именно в контексте турбулентности теория каскадов и самоподобия достигла своих прогнозистских триумфов в период между 1941 и 1948 гг. Главными действующими лицами здесь были Колмогоров, Обухов, Онсагер и фон Вайцзекер, однако традиция связывает достижения этого периода только с именем Колмогорова. Как бы то ни было, где-то между Ричардсоном и Колмогоровым в теории турбулентности произошел некоторый почти незаметный сдвиг.
Если концепция самоподобия вытекает из рассмотрения доступных визуальному восприятию вихрей, то теория Колмогорова уже является чисто аналитической. Фракталы же позволяют применить методы самоподобия к геометрии турбулентности.
Фрактальный подход следует сопоставить с тем своеобразным фактом, что пузыри, пруты, бруски и ленты, составлявшие вчерашние варианты выбора, не самоподобны. Это, очевидно, и послужило причиной появления высказываний в том смысле, что выбор «примитивен» и что необходимы какие-то промежуточные варианты (см., например, [282]).
В голову приходят некоторые возможные произвольные изменения в стандартных формах специально для данного случая. Например, можно расщепить пруты на шнуры, окруженные свободно болтающимися прядями (вспомните аналогичную ситуацию с кильватерными или реактивными струями), и нарезать из брусков тонкие листы с отделяющимися слоями. Можно даже как-нибудь добиться самоподобия этих прядей и слоев.
Однако такое искусственное введение самоподобия никем до сих пор не было предпринято, и я, со своей стороны, считаю это занятие как неперспективным, так и малоприятным. Я предпочитаю следовать совершенно другим путем, предоставляя самому процессу генерировать и общие формы областей, и подробности структуры прядей и слоев. Поскольку в элементарных самоподобных фракталах отсутствует понятие привилегированного направления, мы не будем затрагивать (пока) все те интересные геометрические задачи, которые возникают при комбинации турбулентности и интенсивного движения всей системы.
< Обухов [454] и Колмогоров [277] представили в 1962 г. первые аналитические исследования перемежаемости. По своему непосредственному воздействию эти работы почти догнали работы тех же авторов 1941 г. [453, 276], однако в них имеются серьезные ошибки, и вряд ли можно говорить о сколько-нибудь значительной долгосрочной научной ценности этих работ. См. [367, 378, 387] и [280]. ►
ВНУТРЕННИЙ И ВНЕШНИЙ ПОРОГИ
Благодаря вязкости, внутренний порог турбулентности положителен. А кильватерные и реактивные струи и прочие подобные потоки явно демонстрируют конечный внешний порог Ω . Сейчас, однако, очень многие полагают, что в конечности Ω следует усомниться. Ричардсон [491] заявляет, что «согласно результатам наблюдений, численные значения [предполагается, что они должны сходиться для образцов с размерами, близкими к Ω ] зависят исключительно от того, насколько велика протяженность объема, учитываемого при вычислении. Исследования Дефан- та показывают, что в атмосфере предела достичь невозможно». Метеорологи сначала проигнорировали это заявление (слишком поспешное, на мой взгляд), потом просто забыли о нем. Новые данные, приведенные в главе 11, и исследование лакунарности в главе 34 только подтверждают мое убеждение в том, что вопрос пока еще не закрыт.
СТВОРАЖИВАНИЕ И ФРАКТАЛЬНО ГОМОГЕННАЯ ТУРБУЛЕНТНОСТЬ
На предварительном этапе мы можем приблизительно представить несущее множество турбулентности в виде одного из самоподобных фракталов, полученных в предыдущих главах с помощью створаживания. Это створаживание является грубой «дерандомизированной» формой модели Новикова-Стюарта в главе 23. После конечного числа m этапов створаживающего каскада рассеяние однородно распределяется по N=r −mD из r −3m неперекрывающихся субвихрей n -го порядка, положения которых определяются генератором. Продолжив каскад до бесконечности, мы получаем предельное однородное распределение рассеяния на фрактале размерности D<3 . Я думаю, этот предел можно назвать фрактально гомогенной турбулентностью.
Читать дальшеИнтервал:
Закладка: