Бенуа Мандельброт - Фрактальная геометрия природы

Тут можно читать онлайн Бенуа Мандельброт - Фрактальная геометрия природы - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание

Фрактальная геометрия природы - описание и краткое содержание, автор Бенуа Мандельброт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки.
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.

Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)

Фрактальная геометрия природы - читать книгу онлайн бесплатно, автор Бенуа Мандельброт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Гомогенная турбулентность по Дж.И.Тейлору получается при D→3 . Самым выдающимся результатом такого подхода является то, что створаживание не исключает размерности D=3 , однако допускает и новую возможность: D<3 .

ПРЯМОЕ ЭКСПЕРИМЕНТАЛЬНОЕ ПОДТВЕРЖДЕНИЕ ТОМУ, ЧТО РАЗМЕРНОСТЬ НОСИТЕЛЯ ПЕРЕМЕЖАЕМОСТИ УДОВЛЕТВОРЯЕТ НЕРАВЕНСТВУ D>2

С точки зрения линейных сечений широкие классы неограниченных фракталов ведут себя достаточно просто: сечение почти наверняка пусто при D<2 и с положительной вероятностью непусто при D>2 . (В главе 23 доказывается этот вывод для класса простых фракталов.)

Если бы множество-носитель турбулентного рассеяния удовлетворяло неравенству D<2 , то из предыдущего заявления вытекало бы, что практически ни один из экспериментальных замеров не попадет в зоны турбулентности. Так как этого не происходит, можно предположить, что в реальности D>2 . Это заключение обладает необычайной силой, поскольку оно опирается на многократно воспроизведенный эксперимент, возможные результаты которого сводятся к альтернативе между «часто» и «никогда».

Предварительный топологический аналог D T >2 (см. [387]) выглядит весьма многообещающе, однако слишком специально для того, чтобы подробно рассматривать его на этих страницах.

ГАЛАКТИКИ И ТУРБУЛЕНТНОСТЬ. СРАВНЕНИЕ

Неравенство D>2 для множества-носителя турбулентного рассеяния и обратное неравенство D<2 для распределения массы в космосе (см. главу 9) происходят из тесно связанных между собой разных знаков величины D−2 на типичном сечении фрактала и на его типичной проекции на плоскость (или на небесный свод). Для рассматриваемого в настоящей главе феномена такое сечение должно быть непустым. В главе 9, напротив, было показано, что эффект пылающего неба «отменяется», если большая часть проведенных от Земли прямых линий так никогда и не встречается ни с одной звездой. Это означает, что проекция всех звезд на земной небосвод должна иметь исчезающе малую площадь.

Различие между знаками при D−2 в двух упомянутых проблемах должно иметь самое непосредственное отношение к различию между их структурами.

(НЕ)РАВЕНСТВО ПОКАЗАТЕЛЕЙ [353, 387]

Множество полезных характеристик фрактально гомогенной турбулентности зависит исключительно от D . Эта тема рассмотрена в [387], где перемежающаяся турбулентность характеризуется с помощью ряда концептуально различных показателей, связанных некоторыми (не)равенствами. < Аналогичным образом обстоит дело с явлениями, происходящими в критической точке. ►

Спектральные (не)равенства.В [353] (где я, кстати, использовал обозначение θ=D−2 ) было впервые получено некое (не)равенство; обычно оно выражается через спектр скорости турбулентности, однако здесь мы запишем его в вариационной форме. Внутри фрактально гомогенной турбулентности скорость v в точке x удовлетворяет следующему выражению:

<|v(x)−v(x+r)| 2>=|r| 2/3+B ,

где B=(3−D)/3 .

В случае гомогенной турбулентности Тейлора D=3 , а значит, B обращается в нуль, после чего остается классический показатель Колмогорова 2/3, с которым мы встретимся снова в главе 30.

В [387] также показано, что в более общей модели взвешенного створаживания, описанной в [378], B≤(3−D)/3 .

β -модель.Авторы работы [157] ухитрились нарастить на фрактально гомогенную турбулентность (как она описана в [387]) псевдодинамическую терминологию. Их интерпретация оказалась весьма удобной, хотя математические рассуждения и выводы идентичны моим. Термин « β -модель», которым окрестили эту интерпретацию, даже приобрел некую популярность, и теперь его нередко идентифицируют с фрактальной гомогенностью.

ТОПОЛОГИЯ ТУРБУЛЕНТНОСТИ: ВОПРОС ВСЕ ЕЩЕ ОТКРЫТ

В предыдущих главах мы встретили с избытком свидетельств тому, что одно и то же значение D может характеризовать множества, весьма отличающиеся с точки зрения топологической связности. Топологическая размерность D T ставит нижнюю границу для фрактальной размерности D , однако граница эта очень часто нарушается, причем величины этих нарушений столь велики, что сама граница теряет всякий смысл. Фигура с фрактальной размерностью в интервале от 2 до 3 может выглядеть и как «лист», и как «линия», и как «пыль», а разнообразие конкретных конфигураций настолько велико, что становится очень сложно подобрать или даже придумать новые названия для них. Например, фрактальные фигуры, в общем и целом напоминающие веревку, могут вырастить настолько плотные «пряди», что в результате получится нечто «большее», чем веревка. Аналогичным образом, фрактальные почти-листы оказываются чем-то большим, чем листы. Возможно также произвольно смешивать их «листовые» и «веревочные» признаки. На интуитивном уровне можно было бы понадеяться на то, что должна существовать некая более тесная связь между фрактальной размерностью и степенью связности, однако эту надежду математики потеряли где-то между 1875 и 1925 гг. Мы обратимся к одной специальной проблеме такого рода в главе 23, но уже сейчас можно сказать, что действительная природа весьма нечеткой связи между этими структурами представляет собой по существу неизведанную территорию.

Вопрос о ветвлении, поднимаемый в главе 14, также очень важен, но его воздействие на исследования турбулентности на настоящий момент пока не выяснено.

Неравенства эксцесса.Рассмотрение проблемы связности в [88], [565] и [507] основано на использовании меры перемежаемости, называемой эксцессом. Со стороны может показаться, что эти модели имеют дело с фигурами, которые сочетают в себе топологические размерности плоскости (листы) и прямой (пруты). В действительности же топология здесь рассматривается опосредованно, через показатель предсказанного степенного отношения между эксцессом и числом Рейнольдса. К сожалению, такой подход не срабатывает, так как на показатель эксцесса влияют различные добавочные допущения, и, в конечном счете, он зависит исключительно от фрактальной размерности D фигуры, генерируемой моделью. В [88] предполагается, что значение D равно топологической размерности, которая постулируется там же, D T =2 . Предположение неверно, оно лишь отражает тот факт, что данные фрактальны, а сама модель — нет. В статье [565] постулируется D T =1 , но D при этом принимает дробное значение 2,6, т. е. эта модель включает в себя некий приближенный фрактал. И все же, предпринятая попытка вывести из эксцесса комбинацию интуитивной «фигурной» и топологической размерностей лишена каких бы то ни было оснований.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Бенуа Мандельброт читать все книги автора по порядку

Бенуа Мандельброт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Фрактальная геометрия природы отзывы


Отзывы читателей о книге Фрактальная геометрия природы, автор: Бенуа Мандельброт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x