Бенуа Мандельброт - Фрактальная геометрия природы

Тут можно читать онлайн Бенуа Мандельброт - Фрактальная геометрия природы - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание

Фрактальная геометрия природы - описание и краткое содержание, автор Бенуа Мандельброт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки.
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.

Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)

Фрактальная геометрия природы - читать книгу онлайн бесплатно, автор Бенуа Мандельброт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Здесь необходимо сделать две оговорки. Во-первых, мы оставим в стороне проблему возникновения турбулентности в ламинарном потоке. У меня есть серьезные основания полагать, что в это возникновение также вовлечены некоторые, весьма важные, фрактальные моменты, однако они еще недостаточно разъяснены и поэтому их еще рано обсуждать здесь. Во-вторых, мы не намерены затрагивать такие периодические структуры, как ячейки Бенара и дорожки Кармана.

Начинается глава с призывов о более геометрическом подходе к турбулентности и об использовании при ее исследовании фракталов. Призывы эти многочисленны, но весьма кратки, так как включают в себя в основном предположения с очень небольшим (пока) количеством практических результатов.

После этого мы сосредоточимся на проблеме перемежаемости, которую я довольно активно исследовал. Самый важный из моих выводов состоит в том, что область рассеяния, т. е. пространственное множество, на котором концентрируется турбулентное рассеяние, может быть смоделировано фракталом. Из произведенных с различными целями измерений можно заключить, что размерность D этой области лежит где-то в районе 2,5-2,6, но, вероятно, не превышает 2,66.

К сожалению, у нас не получится построить точную модель, пока мы не определим топологические свойства области рассеяния. В частности, представляет ли она собой пыль, извилистую разветвленную кривую (вихревую трубу) или волнистую слоистую поверхность (вихревой лист)? Первое предположение маловероятно, а второе и третье предполагают модели, похожие на разветвленные фракталы из главы 14. Однако принять такое решение мы с вами пока не можем. Прогресс на новом фрактальном фронте никак не помогает нам разобраться с фронтом старым, топологическим. Наши знания о геометрии турбулентности все еще пребывают в зачаточном состоянии.

Большая часть материала этой главы не требует какой-либо специальной подготовки. < Но специалист наверняка заметит, что часть фрактального анализа турбулентности представляет собой геометрический аналог аналитического анализа корреляций и спектров. Отношения между теориями турбулентности и вероятности — старая история. В самом деле, самые первые исследования Дж. И. Тейлора оказались вторым по значимости (после броуновского движения Перрена) фактором, оказавшим серьезное влияние на создание Норбертом Винером математической теории стохастических процессов. Спектральный анализ уже давно вернул (даже с процентами) все, что он «занимал» в тогдашних исследованиях турбулентности. Настало время и для теории турбулентности воспользоваться достижениями современной стохастической геометрии. В частности, спектр Колмогорова имеет геометрический аналог, который мы рассмотрим в главе 30. ►

ОБЛАКА, КИЛЬВАТЕРНЫЕ СЛЕДЫ, РЕАКТИВНЫЕ СТРУИ И Т. Д.

Общей задачей геометрии турбулентности является описание формы границы области, внутри которой проявляется какое-либо характерное свойство жидкости. В качестве яркого примера таких областей можно назвать нагромождение друг на друга валов как в обычных (водяных) облаках, так и в облаках, образуемых вулканическими извержениями или ядерными взрывами. На этом этапе нашего эссе и в самом деле трудно избавиться от ощущения, что раз уж существует интервал масштабов, в котором облако, можно сказать, имеет вполне определенную границу, то границы облаков просто обязаны быть фрактальными поверхностями. Это относится и к картинке, которую дает наступающий шторм на экране радара. (Первое подтверждение этого предположения можно найти в главе 12.)

И все же я предпочитаю иметь дело с более простыми формами. Мы можем рассмотреть турбулентность внутри ограниченной области, окруженной со всех сторон ламинарной жидкостью — скажем, кильватерный след или реактивную струю. В самом грубом приближении, каждая из этих областей представляет собой цилиндр. Если же рассмотреть ее границу подробнее, мы обнаружим целую иерархию выступов и впадин, величина которых возрастает с увеличением так называемого числа Рейнольдса — классической гидродинамической характеристики. Эта отчетливо видимая сложная «локальная» структура больше напоминает не цилиндр, а веревку с множеством плавающих вокруг распущенных концов. Типичное поперечное сечение такой фигуры уже совершенно не похоже на окружность, а оказывается ближе к кривой Коха и еще ближе к наиболее изрезанным береговым линиям с островами, рассмотренным в главах 5 и 28. В любом случае, граница реактивной струи выглядит фрактальной. Топология присутствующих в ней вихревых колец, безусловно, интересна, но не описывает всей структуры.

Прежде чем мы перейдем к следующему замечанию, я хотел бы, чтобы читатель представил мысленным взором картину какой-нибудь кильватерной струи — скажем, симпатичное нефтяное пятно, расплывающееся за вышедшим из строя танкером. Описывающий такую струю, в самом грубом приближении, «цилиндр» приобретает довольно сложную структуру: он совершенно теряет свою цилиндрическую форму, так как его поперечное сечение быстро расширяется по мере удаления от корабля, а его уже вовсе не прямая «ось» начинает демонстрировать всевозможные изгибы, типичный размер которых также увеличивается с увеличением расстояния от корабля.

Похожие свойства были обнаружены и в турбулентности, вызванной сдвигом относительно друг друга жидких масс, находящихся в соприкосновении (см. [56, 58]). Получающиеся в результате сцепленные структуры («животные») вызывают сейчас широкий интерес. Их внешняя форма лишена каких бы то ни было фрактальных признаков, однако иерархия тонких деталей изгибов границы между жидкостями демонстрирует поразительно фрактальную структуру.

В качестве еще одного примера такого рода можно привести знаменитое Красное пятно в атмосфере Юпитера.

Похожие, но все же другие задачи встают перед исследователем Гольфстрима. Гольфстрим не является единым морским течением с четкой границей — он делится на множество извилистых ответвлений, причем эти ветви, в свою очередь, также делятся и ветвятся. Было бы весьма полезно получить подробное описание его склонности к ветвлению — нет никакого сомнения, без фракталов здесь не обошлось.

ИЗОТЕРМЫ, ДИСПЕРСИЯ И Т.Д.

Интересно также было бы исследовать форму поверхностей постоянной температуры или изоповерхностей любой другой скалярной характеристики потока. Изотермы можно очерчивать с помощью поверхности, окружающей быстроразмножающийся планктон, который живет только при температуре воды, превышающей 45°, и занимает весь доступный ему объем. Граница такого пузыря чрезвычайно изрезана и искривлена; в конкретной модели из главы 30 граница очевидно фрак- тальна.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Бенуа Мандельброт читать все книги автора по порядку

Бенуа Мандельброт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Фрактальная геометрия природы отзывы


Отзывы читателей о книге Фрактальная геометрия природы, автор: Бенуа Мандельброт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x