Бенуа Мандельброт - Фрактальная геометрия природы

Тут можно читать онлайн Бенуа Мандельброт - Фрактальная геометрия природы - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание

Фрактальная геометрия природы - описание и краткое содержание, автор Бенуа Мандельброт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки.
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.

Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)

Фрактальная геометрия природы - читать книгу онлайн бесплатно, автор Бенуа Мандельброт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

D c=E/(τ−1)=E/(1+σ −1)

и D c=1+(E−η)/2 .

Благодаря установленным физиками соотношениям между величинами τ , σ и η , мы знаем, что вышеприведенные формулы для D c эквивалентны. И наоборот, их эквивалентность имеет не только физические корни, поскольку следует из геометрических соображений.

Харрисон, Бишоп и Куинн [198], Киркпатрик [267] и Штауффер [536] независимо друг от друга получили одинаковое значение D c . Они отталкиваются от свойств кластеров при p>p крити, как следствие, выражают полученный результат с помощью различных критических показателей ( β , γ , v и σ ). За их рассуждениями не стоит никакой конкретной фрактальной картины. Примером опасностей, таящихся в таком подходе (относительно которого я уже предостерегал ранее в этой же главе), может послужить тот факт, что он привел Стенли [533] к заключению: величины Q и D c являются одинаково законными размерностями.

В случае E=2 численное значение D c равно 1,89. Оно согласуется с эмпирическими свидетельствами, полученными с помощью определенной процедуры, знакомой нам по другим задачам. Возьмем некоторую величину r , которая, кстати, вовсе не обязана иметь вид 1/b , где b — целое число. Теперь возьмем большой вихрь, который в сущности представляет собой квадратную или кубическую решетку со стороной 1. Покроем его субвихрями со стороной r , сосчитаем количество N квадратов или кубов, пересекающих кластер, и вычислим приближенное значение размерности ln N/ ln (1/r) . Повторим процесс с каждым непустым субвихрем со стороной r , покрыв его субсубвихрями со стороной r 2 . И так далее, по возможности большее число раз. Наиболее осмысленные результаты дает r , близкое к 1. В некоторых ранних экспериментах [391, 192] была получена смещенная оценка D + ~1,77 , однако последующее, более обширное, моделирование [537] подтвердило теоретическое значение D .

< Смещенное экспериментальное значение D + очень близко к Q ; на какой-то миг может даже показаться, что это подтверждает теоретические рассуждения [534] и [391], которые ошибочны в том, что объявляют величину Q размерностью. Мое внимание на эту ошибку обратил С. Киркпатрик. Еще одну, более раннюю, отличную от вышеприведенной, но также ошибочную оценку D можно найти в статье [293]. ►

КИПАРИСОВЫЕ РОЩИ ОКЕФЕНОКИ

Если взглянуть с самолета на лес, за которым никто систематически не «присматривает», можно увидеть, что его граница весьма напоминает береговую линию острова. Контуры отдельных групп деревьев чрезвычайно извилисты и изрезаны, и по соседству с каждой большой группой расположены меньшие группы различного размера. Мое предположение о том, что эти формы могут подчиняться закону Ричардсона и/или/ закону Корчака, было полностью подтверждено в неопубликованном исследовании болота Окефеноки (см. [261]), предпринятом X. М. Хейстингсом, Р. Монтиччиоло и Д. вун Канноном. Наиболее изрезанными оказались контуры кипарисовых рощ ( D~1,6 ); гораздо слабее выражена изрезанность широколиственных и смешанных лесов: размерность D их границ приближается к 1. Мои информаторы отмечают наличие впечатляющего разнообразия масштабов как при личном наблюдении, так и при изучении карт растительности. Имеется, кстати, и внутренний порог, равный приблизительно 40 акрам, — возможно, следствие особенностей аэрофотосъемки.

14 ВЕТВЛЕНИЕ И ФРАКТАЛЬНЫЕ РЕШЕТКИ

В главе 6 мы рассматриваем плоские кривые Коха с размерностью D<2 , которые не содержат двойных точек, благодаря чему их можно назвать лишенными самопересечений или неразветвленными. А глава 7 посвящена кривым Пеано, неизбежным пределом для которых являются повсюду плотные двойные точки. В настоящей главе мы намерены сделать следующий шаг и исследовать некоторые примеры намеренно разветвленных самоподобных фигур: плоских кривых ( 1 ), пространственных кривых ( 1 ) и поверхностей ( 2 ). Количество двойных точек в разветвленной самоподобной кривой стремится к бесконечности.

Математический аппарат, используемый в этой главе, не нов (хотя и известен очень немногим специалистам) — новым является мое применение его для описания Природы.

САЛФЕТКА СЕРПИНСКОГО - ОЧЕРЕДНОЕ ЧУДОВИЩЕ

Я предложил термин салфетка Серпинского для обозначения фигуры, изображенной на рис. 205. На рис. 207 показан пространственный вариант той же фигуры. Процедуры их построения описаны в пояснениях к рисункам.

У Хана [190] читаем: «Точка кривой называется точкой ветвления, если граница сколь угодно малой ее окрестности содержит более чем две точки, принадлежащие той же кривой... Здравый смысл, судя по всему, настаивает на том, что никакая кривая просто не может состоять из одних лишь ... точек ветвления. Это очевидное убеждение опровергается ... кривой Серпинского, все точки которой являются точками ветвления».

ЭЙФЕЛЕВА БАШНЯ: ПРОЧНОСТЬ И ИЗЯЩЕСТВО

И опять Хан со своими взглядами сел в лужу, хотя надо признать, что не характерный для него выбор слов («судя по всему») оказывается весьма мудр. Мой первый контраргумент позаимствован из достижений инженерной мысли. (Перед тем, как приступить к рассмотрению компьютерных структур в конце главы 12, я уже говорил о том, что не усматриваю ничего нелогичного во включении искусственных систем со сложной структурой в настоящий труд, посвященный феноменам Природы.)

Я утверждаю, что (задолго до Коха, Пеано и Серпинского) в построенной Гюставом Эйфелем в Париже башне была осознанно воплощена идея фрактальной кривой, содержащей множество точек ветвления.

В первом приближении Эйфелева башня состоит из четырех А-образных элементов. Согласно легенде, Эйфель выбрал букву А, чтобы выразить в своей башне слово Amour. Все четыре А-образных элемента имеют общую вершину, а соседние А — общее ребро. Кроме того, на верхушке возвышается еще одна, прямая, башня.

Заметьте, что и А-элементы, и верхняя башня сделаны не из цельных балок, а из колоссальных ферм. Фермой называется жестко скрепленная совокупность взаимосвязанных звеньев, каждое из которых не может быть деформировано без деформации, по крайней мере, одного из соседних звеньев. При одинаковой прочности фермы оказываются значительно легче цельных цилиндрических балок. А Эйфель сообразил, что фермы, звенья которых сами являются фермами, еще легче.

Бакминстер Фуллер открыл миру глаза на то, что секрет прочности скрыт в точках ветвления, однако умудренные опытом строители готических соборов знали об этом задолго до него. Чем дальше мы заходим в применении этого принципа, тем ближе подбираемся к идеалу Серпинского! Бывший ученик Безиковича Фримен Дайсон в поисках прочных и легких конструкций для своих межпланетных построек описал однажды бесконечно экстраполированную Эйфелеву башню ([125], с. 646).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Бенуа Мандельброт читать все книги автора по порядку

Бенуа Мандельброт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Фрактальная геометрия природы отзывы


Отзывы читателей о книге Фрактальная геометрия природы, автор: Бенуа Мандельброт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x