Бенуа Мандельброт - Фрактальная геометрия природы
- Название:Фрактальная геометрия природы
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2002
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.
Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
ПРИРУЧЕНИЕ ЗАУЗЛЕННЫХ ЧУДОВИЩ ПЕАНО
Створаживанием нельзя получить заполняющую плоскость совокупность кластеров ( D=2 ), однако я обнаружил возможность альтернативного подхода к задаче: нужно лишь воспользоваться кривыми Пеано — правда, несколько иными, нежели те, что были приручены в главе 7. Как читатель, несомненно, помнит, кривые Пеано, терагоны которых избегают самопересечений, порождают деревья рек и водоразделов. Другие терагоны Пеано (например, терагоны на рис. 95, если оставить углы нескругленными) представляют собой просто заполненные ячейки решетки. По мере продолжения построения пустые ячейки, разделяемые такими кривыми, «сходятся» в повсюду плотную пыль (например, состоящую из точек, ни одна координата которых не кратна b −k ).
Между этими крайностями существует еще один весьма интересный класс кривых Пеано. Ниже представлен примерный генератор одной такой кривой вместе с результатом следующего этапа построения:
Теперь мы готовы приручить и этот класс кривых Пеано. На рисунке видно, что каждая точка самокасания «заузливает» открытый предкластер, который затем может обзавестись ветвями и точками самокасания, потерять при «разузливании» некоторые части самого себя и, в конце концов, превратиться в тонкую и в высшей степени разветвленную кривую, определяющую контактный кластер. Согласно нашему определению, данному в предыдущих разделах, диаметр кластера Λ остается постоянным с момента его рождения и приблизительно равен длине стороны «породившего» кластер квадрата. Его распределение подчиняется уже известному нам соотношению Nr(Λ>λ)∝λ −2 .
Заметим мимоходом, что в отличие от коховых контактных кластеров, которые являются пределами рекурсивно построенных кривых, данные кластеры представляют собой пределы (в своем роде) открытых компонентов дополнения кривой.
КЛАСТЕРЫ В БЕРНУЛЛИЕВОЙ ПЕРКОЛЯЦИИ
Какой бы метод ни использовался при генерации фрактальных контактных кластеров с размерностями D=E и D c , они представляют собой геометрическую модель, в которой до недавних пор весьма нуждались физики для разрешения одной очень важной проблемы — бернуллиевой перколяции сквозь решетки. Дж. М. Хаммерсли, сформулировавший и первым исследовавший эту проблему, не употреблял в данном контексте имени Бернулли, однако из-за фрактальной перколяции, с которой мы встретимся в главе 23, нам придется здесь пользоваться полным термином. (Этот термин был также принят в [530], причем независимо от меня.)
Литература.Всем желающим рекомендую следующие обзорные материалы по бернуллиевой перколяции: [520], [112] (особенно хороша глава, написанная Дж. У. Эссамом), [266], [98], [536] и [134].
Определения.Понятие перколяции включает в себя некоторые элементы из теории вероятности, поэтому, если быть до конца последовательными, нам не следовало бы обсуждать его на данном этапе. Однако некоторая толика непоследовательности приносит порой неплохие результаты. Простейшей задачей о перколяции для случая E=2 является перколяция по связям на квадратной решетке. Для упрощения картины представим себе большую квадратную решетку, составленную из двух видов стержней: одни сделаны из изолирующего винила, другие — из электропроводящей меди. Такая решетка может считаться решеткой Бернулли, если каждый стержень выбран совершенно случайно, независимо от других стержней, причем вероятность выбора проводящего стержня равна p . Наибольшие скопления связанных между собой медных или виниловых стержней называются, соответственно, медными или виниловыми кластерами. Если решетка содержит хотя бы одну непрерывную цепочку медных стержней, электрический ток сможет пройти всю решетку насквозь, от одного края до другого. В таких случаях говорят, что решетка перколирует. (От латинского per «сквозь» и colare «течь».) Все стержни, находящиеся в неразрывном электрическом контакте одновременно с верхним и нижним краями решетки, образуют «перколяционный кластер», а стержни, непосредственно участвующие в передаче, составляют так называемую «магистраль» кластера.
Обобщение на решетки другой формы и на структуры с E>2 очевидно.
Критическая вероятность.Наиболее замечательная находка Хаммерсли имеет отношение к особой роли некоторой пороговой вероятности или, как он ее назвал, критической вероятности p крит. Эта величина появляется на сцене, когда размер решетки Бернулли (измеряемый числом стержней) стремится к бесконечности. Оказывается, когда p>p крит, вероятность существования перколяционного кластера возрастает с размером решетки и стремится к единице. Когда же p
крит, вероятность перколяции устремляется к нулю.
Поскольку в случае перколяции по связям на квадратных решетках дело обстоит таким образом, что либо медь, либо винил должны перколировать, то p крит =1/2 .
Аналитическая масштабная инвариантность.Изучение перколяции уже довольно давно вылилось в поиски аналитических выражений, которые связали бы между собой стандартные физические величины. Выяснилось, что все эти величины обладают свойством масштабной инвариантности в том смысле, что отношения между ними задаются степенными законами. При p≠p критмасштабная инвариантность сохраняется вплоть до внешнего порога, величина которого зависит от p−p крити обозначается через ξ . По мере того, как p→p крит, порог ξ→∞ . Физики постулируют (см. [536], с. 21), что величина следует правилу, полученному нами на с. 180.
ФРАКТАЛЬНАЯ ГЕОМЕТРИЯ КЛАСТЕРОВ
Форма кластеров.Допустим, что p=p крит, а длина каждого отдельного стержня уменьшается, в то время как общий размер решетки остается постоянным. Кластеры при этом становятся все более тонкими («кожа да кости»), все более извилистыми и разветвленными. В частности [293], количество стержней, расположенных вне кластера, но по соседству с каким-либо стержнем, принадлежащим кластеру, приблизительно пропорционально количеству стержней внутри кластера.
Гипотеза о фрактальных кластерах.Вполне естественно предположить, что масштабная инвариантность — свойство не только аналитическое, но распространяется и на геометрию кластеров. Однако эту идею нельзя осмыслить средствами стандартной геометрии, поскольку кластеры отнюдь не являются прямыми линиями. Фрактальная же геометрия, можно сказать, просто создана для устранения таких трудностей: как следствие, я высказал предположение, что кластеры можно представить в виде фрактальных σ -кривых, удовлетворяющих равенствам D=2 и 1 c . Это предположение было принято и оказалось весьма плодотворным. Подробнее мы рассмотрим его в главе 36.
Читать дальшеИнтервал:
Закладка: