Бенуа Мандельброт - Фрактальная геометрия природы
- Название:Фрактальная геометрия природы
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2002
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.
Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
< Фракталом называется множество, размерность Хаусдор- фа-Безиковича для которого строго больше его топологической размерности.
< Любое множество с нецелым значением D является фракталом. Например, исходное канторово множество представляет собой фрактал, поскольку, как мы увидим в главе 8, его размерность
D= ln2 / ln3 ≈0,6309>0 , при D T =0 .
Канторово множество в пространстве R E можно обобщить так, чтобы D T =0 , a D принимала бы любые желаемые значения в промежутке от 0 до E (включительно).
< Фракталом является и исходная кривая Коха, поскольку, как будет показано в главе 6, ее размерность
D= ln4 / ln3 ≈1,2618>1 , при D T =1 .
< Фрактал может иметь и целочисленную размерность. Например, в главе 25 показано, что траектория броуновского движения представляет собой фрактал, так как ее размерность
D=2 , при D T =1 .
< Тот поразительный факт, что размерность D не должна непременно быть целым числом, заслуживает некоторого терминологического отступления. Если понимать термин «дробь»1 в широком смысле, т.е. как синоним термина «нецелое вещественное число», то некоторые из вышеперечисленных значений размерности D являются дробными — размерность Хаусдорфа-Безиковича иногда даже называют дробной размерностью. Однако учитывая, что D может принимать и целые значения (меньшие, чем E , но строго большие, чем D T ), я предпочитаю называть величину D фрактальной размерностью. ►
ФРАКТАЛЫ В ГАРМОНИЧЕСКОМ АНАЛИЗЕ
< Исследование фракталов частично затрагивает и геометрический аспект гармонического анализа, однако в настоящем труде этот факт не слишком подчеркивается. Большинству читателей гармонический анализ (иначе называемый спектральным или анализом Фурье) мало известен, а многие из тех, кто эффективно используют его на практике, мало знакомы с его фундаментальными структурами.
Кроме того, каждый из этих подходов — и фрактальный, и спектральный — имеет свои характерные особенности и свою прелесть, которые лучше постигать на своем собственном опыте. И наконец, на мой взгляд, по сравнению с гармоническим анализом фракталы просты и интуитивно понятны. ►
О «ПОНЯТИЯХ, КОТОРЫЕ ... НОВЫ, НО ... »
В свое время Лебег немало потешался над некоторыми «понятиями, которые, безусловно, новы, но абсолютно бесполезны». К размерности D эту характеристику никто не применял, однако ее использование было ограничено весьма узким кругом областей, причем все эти области относились к чистой математике. Я, пожалуй, был первым, кто успешно применил размерность D к описанию Природы. Одной из важнейших целей моей работы является закрепление за размерностью D центрального места в эмпирической науке и демонстрация таким образом того, что размерность эта обладает гораздо более широкой применимостью, чем кто-либо может себе представить.
В некоторых областях физики мое утверждение о важности размерности D было принято с исключительной готовностью. Более того, многие ученые, работающие в этих областях, сознавая неадекватность обычной размерности, уже пытались вести поиски в этом направлении, получая в результате всевозможные дробные, аномальные, либо непрерывные размерности. К сожалению, эти поиски никак не были связаны друг с другом. К тому же в некоторых случаях различные размерности определялись одинаково, ни одна из них не могла похвастать наличием математического теоретического обоснования, и ни одна не была должным образом разработана, так как из-за отсутствия математического обоснования эти размерности невозможно было отличить друг от друга. Для тех разработок, которые будут описаны ниже, существование математической теории жизненно необходимо.
МАТЕМАТИЧЕСКОЕ ИССЛЕДОВАНИЕ ФОРМЫ - ЭТО НЕ ТОЛЬКО ТОПОЛОГИЯ
Если вы спросите у математика, какая четко определенная область математики имеет дело с формами, он почти наверняка упомянет топологию. Топология, безусловно, имеет к нашим целям самое непосредственное отношение — мы даже упоминали о ней в предыдущей главе, — однако в настоящем эссе выдвигается и защищается утверждение, что довольно расплывчатое понятие формы содержит не только топологические, но и другие математические аспекты.
Топология, которую раньше называли геометрией местоположений или analysis situs1 (греческое слово переводится как «место» или «положение»), полагает, что все горшки с двумя ручками имеют одинаковую форму, так как если бы они обладали неограниченной гибкостью и сжимаемостью, то можно было бы из одного горшка вылепить любой другой, причем непрерывным образом, не делая никаких новых отверстий и не закрывая старых. Топология также учит, что форма береговой линии любого острова идентична форме береговой линии любого другого острова, поскольку все такие линии топологически идентичны дружности. Топологическая размерность береговой линии равна топо- логической размерности окружности, и обе они равны 1. Если добавить острову несколько не соприкасающихся с ним «спутников», то совокупная береговая линия получившегося архипелага будет топологически идентична совокупности нескольких окружностей. Таким образом, топология не видит разницы между различными береговыми линиями.
В главе 5 показано, что различные береговые линии имеют, как правило, различные фрактальные размерности. Различия между фрактальными размерностями обусловлены различиями между нетопологическими аспектами формы, которые я предлагаю назвать фрактальными.
Большинство действительно важных и интересных задач сложным образом сочетают в себе фрактальный и топологический аспекты формы.
Заметим, что в топологии определения собственно поля и размерности D T развивались параллельно, а понятие фрактальной размерности D появилось на полвека раньше настоящего исследования в области фрактальных форм.
Кстати, из-за того, что некий класс топологических пространств носит имя Феликса Хаусдорфа, широко используемый для обозначения размерности D термин «хаусдорфова размерность» может быть воспринят как сокращение от «размерности хаусдорфова пространства», создавая тем самым впечатление, что D является топологическим понятием — это абсолютно не так. Вот вам еще одна причина, почему я предпочитаю термин фрактальная размерность.
ЭФФЕКТИВНАЯ РАЗМЕРНОСТЬ
Помимо математических идей, лежащих в основе размерностей D T и D , я часто прибегаю к помощи эффективной размерности — понятия, которому не следует давать точного определения. Это мощное интуитивное понятие представляет собой возврат к древнегреческой пифагорейской геометрии. Новизна заключается в том, что в настоящем эссе значение эффективной размерности может быть дробным.
Читать дальшеИнтервал:
Закладка: