Эдвард Шейнерман - Путеводитель для влюбленных в математику

Тут можно читать онлайн Эдвард Шейнерман - Путеводитель для влюбленных в математику - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент Альпина, год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Путеводитель для влюбленных в математику
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Альпина
  • Год:
    2018
  • Город:
    Москва
  • ISBN:
    978-5-9167-1131-8
  • Рейтинг:
    4/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Эдвард Шейнерман - Путеводитель для влюбленных в математику краткое содержание

Путеводитель для влюбленных в математику - описание и краткое содержание, автор Эдвард Шейнерман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Принято считать, что математика – наука точная и совершенно скучная, но Эдвард Шейнерман берется доказать обратное. Он утверждает, что математика бывает не менее увлекательной, чем гуманитарные дисциплины. Как объяснить тот факт, что бо́льшая часть окружающих нас чисел начинается на единицу, а тех, что начинаются на девятку, – совсем мало? Каков наилучший путь выиграть выборы, если победителями становятся больше двух кандидатов? Как понять, насколько можно доверять даже самому высокоточному медицинскому тесту? Можно ли покрыть весь пол паркетинами в виде правильных пятиугольников и не оставить зазоров? Как проверить, не сфабрикована ли налоговая отчетность, всего лишь проанализировав первые цифры денежной суммы? Может ли математика пролить свет на вопрос о свободе воли? Ответы на все эти и многие другие вопросы вы найдете в этой книге. Автор приглашает читателя испытать свои силы в решении математических головоломок и станет вашим гидом в захватывающем и комфортном путешествии по миру чисел, геометрических фигур и теории вероятностей. Достаточно школьных знаний алгебры, а итогом станет незабываемая радость знакомства с основами математического мышления.

Путеводитель для влюбленных в математику - читать онлайн бесплатно ознакомительный отрывок

Путеводитель для влюбленных в математику - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Эдвард Шейнерман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

На втором этапе появляется еще девять отрезков (по три внутри каждого из трех треугольников по краям). Длина каждого маленького отрезка равна 1/4, и нам нужно прибавить к общей длине еще 9/4.

На третьем этапе возникают еще 27 отрезков (по три внутри девяти треугольников). Длина каждого равна 1/8, поэтому мы прибавляем 27/8 к итоговой длине.

Следующий этап прибавляет 81/16, и т. д. На этапе n мы прибавляем Путеводитель для влюбленных в математику - изображение 329Чем больше n , тем больше общая длина.

Вывод:сумма длин всех отрезков, составляющих треугольник Серпинского, бесконечна!

Треугольник Серпинского имеет нулевую площадь и бесконечную длину. Неужели у этой фигуры больше одного измерения и меньше двух? Умозаключение кажется туманным, можно выразиться поточнее. Сейчас мы покажем, что треугольник Серпинского имеет измерение 1,5849625007… Честное слово!

Подсчитываем клеточки

Количество измерений геометрической фигуры характеризует ее «толщину». Объект с одним измерением (например, отрезок) «тоньше», чем область внутри треугольника, а она, в свою очередь, «тоньше», чем шар. Посмотрим, как выразить эту расплывчатую идею «толщины» и «тонкости» на строгом математическом языке.

Идея состоит в том, чтобы начертить фигуру на миллиметровке. Мы будем рисовать одну и ту же фигуру снова и снова на бумаге со все более и более мелкой сеткой.

Проиллюстрируем эту идею с помощью незамысловатой загогулины. Изобразим одну и ту же загогулину на бумаге, размеченной клеточками 1 × 1, затем 1/2 × 1/2, затем 1/4 × 1/4 и т. д. Вот результат:

Мы закрасили клеточки затронутые нашей кривой Посчитаем их количество - фото 330

Мы закрасили клеточки, затронутые нашей кривой. Посчитаем их количество:

Заметим что при уменьшении стороны клеточки вдвое мы грубо говоря удваиваем - фото 331

Заметим, что при уменьшении стороны клеточки вдвое мы, грубо говоря, удваиваем количество клеточек, необходимых для покрытия кривой. Почему так? Каждая клеточка покрывает часть длины кривой. Когда мы уменьшаем длину клеточки в два раза, нам нужно где-то в два раза больше клеточек. Это соотношение можно выразить уравнением:

Здесь N количество клеточек затронутых кривой а g длина стороны одной - фото 332

Здесь N – количество клеточек, затронутых кривой, а g – длина стороны одной клеточки. Символ означает «пропорционально» и подразумевает неточность соотношения. Если бы наша кривая была обычным отрезком прямой линии, мы бы вывели точное уравнение. Но стоит ненамного скрутить прямую линию, и соотношение становится несовершенным.

Продолжим подсчитывать клеточки, на сей раз затронутые двумерной фигурой – кругом [181] Напоминаю: с точки зрения математики окружность – одномерная кривая, а круг – двумерная фигура: часть плоскости внутри окружности и сама окружность. с радиусом 1.

Будем снова и снова вычерчивать наш круг на бумаге с клеточками 1 × 1, 1/2 × 1/2, 1/4 × 1/4 и т. д. Всякий раз мы станем закрашивать клеточки, затронутые кругом, то есть те, что расположены внутри круга, и те, которые пересекает окружность.

На бумаге, расчерченной 1 × 1, разместим центр круга на перекрестье клеточек; легко заметить, что он затрагивает ровно четыре клеточки. Изобразим развитие ситуации на следующих этапах:

На втором этапе круг затрагивает все 16 клеточек затем все клеточки кроме 4 - фото 333

На втором этапе круг затрагивает все 16 клеточек, затем все клеточки, кроме 4, то есть 60. Считать дальше скучно, поэтому доверим процесс компьютеру. Вот результат:

Сразу видно что уменьшение стороны клеточки в 2 раза приводит к увеличению - фото 334

Сразу видно, что уменьшение стороны клеточки в 2 раза приводит к увеличению числа закрашенных клеточек примерно в 4 раза. Вот точные соотношения:

Грубо говоря число закрашенных клеточек действительно возрастает в четыре - фото 335

Грубо говоря, число закрашенных клеточек действительно возрастает в четыре раза. Но это приближение становится не таким грубым, когда число клеточек увеличивается. Почему?

Когда площадь клеточек мала, подавляющее большинство закрашенных клеточек лежит внутри круга. Кое-какие можно увидеть на периферии, но их ничтожно мало по сравнению с другими. Когда мы уменьшаем сторону клеточки вдвое, клеточек внутри круга становится больше в четыре раза, а вот количество клеточек на периферии увеличивается на меньшее число, потому что часть из них окружность не пересекает.

Рассуждая таким образом, мы поймем, что уменьшение стороны клеточки в 10 раз приводит к росту числа закрашенных клеточек примерно в 100 раз. Внутри круга клеточек становится ровно в 100 раз больше, но применительно к границе это утверждение не совсем верно.

Мы можем выразить соотношение между количеством клеточек, затронутых кругом, и длиной стороны клеточки следующим образом:

Вот еще один способ убедиться в том что формула B верна Площадь круга равна - фото 336

Вот еще один способ убедиться в том, что формула (B) верна. Площадь круга равна π r ². Если радиус круга равен 1, его площадь равна π.

Нарисуем круг на бумаге с клеточками g × g и посчитаем, сколько клеточек он затронул; обозначим их количество буквой N . Каждая клеточка имеет площадь g ². Общая площадь закрашенных клеточек почти совпадает с площадью круга. Таким образом,

π ≈ Ng ².

Следовательно, Путеводитель для влюбленных в математику - изображение 337В упрощенном виде это приводит к соотношению Путеводитель для влюбленных в математику - изображение 338

Мы нашли способ подсчитывать длины одномерных фигур и площади двумерных.

Соотношение (A) верно не только для нашей загогулины, но и для любого одномерного объекта. Когда мы делаем сетку мельче в 10 раз, количество клеточек, затронутых линией, вырастает примерно в 10 раз.

Соотношение (B) тоже выполняется не только для круга, но и для любой двумерной фигуры. Делаем сетку мельче в 10 раз – и количество клеточек, затронутых кругом, увеличивается примерно в 100 раз, потому что внутри одной большой клеточки теперь располагается 100 маленьких.

Итак: [182] Обратите внимание, что мы записали g как g 1 . Это ничего не меняет, но служит неким предзнаменованием.

Размерность треугольника Серпинского Мы теперь умеем уверенно отличать - фото 339
Размерность треугольника Серпинского

Мы теперь умеем уверенно отличать одномерные объекты от двумерных. Вычерчиваем объект на миллиметровке, делаем сетку все более мелкой и на каждом этапе подсчитываем затронутые им клеточки. Если выполняется соотношение (A), объект одномерный; если соотношение (B), объект двумерный.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эдвард Шейнерман читать все книги автора по порядку

Эдвард Шейнерман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Путеводитель для влюбленных в математику отзывы


Отзывы читателей о книге Путеводитель для влюбленных в математику, автор: Эдвард Шейнерман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x