Эдвард Шейнерман - Путеводитель для влюбленных в математику

Тут можно читать онлайн Эдвард Шейнерман - Путеводитель для влюбленных в математику - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент Альпина, год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Путеводитель для влюбленных в математику
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Альпина
  • Год:
    2018
  • Город:
    Москва
  • ISBN:
    978-5-9167-1131-8
  • Рейтинг:
    4/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Эдвард Шейнерман - Путеводитель для влюбленных в математику краткое содержание

Путеводитель для влюбленных в математику - описание и краткое содержание, автор Эдвард Шейнерман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Принято считать, что математика – наука точная и совершенно скучная, но Эдвард Шейнерман берется доказать обратное. Он утверждает, что математика бывает не менее увлекательной, чем гуманитарные дисциплины. Как объяснить тот факт, что бо́льшая часть окружающих нас чисел начинается на единицу, а тех, что начинаются на девятку, – совсем мало? Каков наилучший путь выиграть выборы, если победителями становятся больше двух кандидатов? Как понять, насколько можно доверять даже самому высокоточному медицинскому тесту? Можно ли покрыть весь пол паркетинами в виде правильных пятиугольников и не оставить зазоров? Как проверить, не сфабрикована ли налоговая отчетность, всего лишь проанализировав первые цифры денежной суммы? Может ли математика пролить свет на вопрос о свободе воли? Ответы на все эти и многие другие вопросы вы найдете в этой книге. Автор приглашает читателя испытать свои силы в решении математических головоломок и станет вашим гидом в захватывающем и комфортном путешествии по миру чисел, геометрических фигур и теории вероятностей. Достаточно школьных знаний алгебры, а итогом станет незабываемая радость знакомства с основами математического мышления.

Путеводитель для влюбленных в математику - читать онлайн бесплатно ознакомительный отрывок

Путеводитель для влюбленных в математику - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Эдвард Шейнерман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Что такое прямая?

Прямая представляет собой множество точек, как и окружность или треугольник. Это множество точек обладает определенными свойствами.

Интуитивно мы понимаем, что такое прямая: она тонкая (у нее нет толщины), ровная и бесконечно продолжается в обоих направлениях. Но такое описание – еще не математическое определение. Чем прямая линия отличается от кривой? Закрепить эту идею не так-то просто.

Как мы уже отмечали, у Евклида был собственный подход к определению базовых объектов, сегодня мы воспринимаем точки и прямые иначе. У нас есть объекты под названием «точки» и множества этих объектов под названием «прямые». Если оба рода объектов удовлетворяют постулатам Евклида, получается система под названием евклидова геометрия .

Если мы изменим утверждения Евклида о фундаментальных свойствах точек и прямых, мы получим геометрию иного типа. Рассмотрим простой пример. Для начала мы сохраним первый постулат Евклида, который гласит:

1. Если даны две точки, есть одна и только одна прямая, проходящая через эти точки.

А дальше включим новый постулат, переворачивающий роли прямых и точек:

1'. Если даны две прямые, есть одна и только одна точка, принадлежащая данным двум прямым [192] Таким образом, параллельных прямых в этой системе не существует: всякая пара прямых имеет точку пересечения. Это разительное отличие от евклидовой геометрии. .

Должным образом выбранные «точки» и «прямые» могут удовлетворить тому и другому условию. Пусть у нас есть семь точек. Назовем их незамысловатым образом: 1, 2, 3, 4, 5, 6 и 7. Кроме того, у нас есть семь прямых: {1, 2, 3}, {1, 5, 6}, {1, 4, 7}, {2, 5, 7}, {2, 4, 6}, {3, 4, 5} и {3, 6, 7}.

Эти «прямые» не имеют ничего общего с «прямыми» Евклида [193] Система из семи точек и семи прямых называется плоскостью Фано. . Каждая состоит всего из трех точек!

Мы легко удостоверимся, что в этой системе из семи точек и семи прямых верны оба постулата.

• Проверим постулат 1. Возьмем любые две точки, скажем 2 и 5. Они принадлежат прямой {2, 5, 7}, и нет другой прямой, содержащей эти две точки. Вы можете самостоятельно рассмотреть все пары среди семи точек и увидеть, что всегда есть прямая, и только одна, содержащая обе точки.

• Проверим постулат 1'. Выберем любые две прямые, например {1, 4, 7} и {3, 4, 5}. Обе содержат точку 4, и это единственная общая для них точка. Вы можете рассмотреть все пары среди семи прямых и увидеть, что они всегда имеют общую точку, причем всего одну.

Странно рассуждать о геометрии без чертежей. К счастью, можно изобразить данную систему с помощью диаграммы. Семь точек помечены кружочками, а прямые представляют собой отрезки (в большинстве случаев) и окружность (в случае прямой {2, 4, 6}).

Хитрость заключается в том, что мы подобрали некие объекты, назвали их «точками», а затем по определенному принципу сформировали множества этих объектов и назвали их «прямыми». Если все объекты удовлетворяют нашим постулатам, мы по праву можем называть их точками и прямыми, даже если они не имеют ничего общего с точками и прямыми в понимании Евклида.

Евклидовы точки и линии можно определить следующим образом Точка пара - фото 363

Евклидовы точки и линии можно определить следующим образом. Точка – пара действительных чисел ( x, y ). Прямая – множество точек ( x, y ), удовлетворяющих уравнению ax + bx + c = 0, где числа a и b не равны нулю. С помощью этих определений (и соответствующих определений окружности и угла) можно доказать , что постулаты Евклида выполняются.

Если мы воспринимаем точки как пары чисел, а прямые как решения уравнений, то оказываемся на декартовой плоскости, названной в честь математика и философа Рене Декарта.

Вся плоскость внутри круга

Мы стали своевольничать с употреблением слов «точка» и «прямая». Мы можем назвать что угодно «точкой» и сгруппировать эти точки в множества под названием «прямые», если все они удовлетворяют надлежащим постулатам. Что значит надлежащим ? Для Евклида несомненными утверждениями были те пять постулатов, которые мы привели в начале главы.

Я сейчас расскажу о новых определениях «точек» и «прямых», необходимых для создания гиперболической геометрии . В этой геометрии все точки лежат внутри одной окружности. Область внутри нее мы будем называть гиперболической плоскостью [194] Эту модель гиперболической плоскости называют диском Пуанкаре в честь французского математика Анри Пуанкаре (1854–1912). .

Прямые на гиперболической плоскости представляют собой дуги окружностей. Это обескураживает: как дуга может быть прямой? Разве дуга не кривая? Давайте говорить «гиперболическая прямая» , отличать ее от негибкой тезки.

Вот два способа построения гиперболических прямых:

• Начертите окружность, пересекающую гиперболическую плоскость под двумя прямыми углами. Часть окружности внутри гиперболической плоскости представляет собой гиперболическую прямую.

• Проведите прямую через центр гиперболической плоскости. Часть прямой внутри гиперболической плоскости тоже представляет собой гиперболическую прямую.

На чертеже вы можете видеть три прямые на гиперболической плоскости.

Гиперболическая плоскость это область внутри обозначенной точками окружности - фото 364

Гиперболическая плоскость – это область внутри обозначенной точками окружности. Две гиперболические прямые – дуги пунктирных окружностей, еще одна гиперболическая прямая – диаметр окружности, обозначенной точками. Замечу, что конечные точки дуг и диаметра не относятся к соответствующим гиперболическим прямым. (Обозначенные пунктиром окружности не входят в гиперболическую плоскость, они просто показывают, по какому принципу мы вычерчиваем гиперболические прямые – это части окружностей, пересекающих обозначенную точками окружность под прямыми углами.)

На следующем чертеже вы видите три гиперболические прямые. Две из них пересекаются, а третья параллельна и той и другой! Такое совершенно невозможно на евклидовой плоскости.

Выводы Здесь все не так как мы привыкли Многие геометрические факты на - фото 365
Выводы

Здесь все не так, как мы привыкли. Многие геометрические «факты» на евклидовой плоскости не работают в случае гиперболической плоскости.

Для начала: все не так с треугольниками. На евклидовой плоскости сумма углов треугольника равна 180° (мы доказали это обстоятельство в главе 13, однако опирались на постулат о параллельных прямых). На гиперболической плоскости сумма углов треугольника меньше 180°.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эдвард Шейнерман читать все книги автора по порядку

Эдвард Шейнерман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Путеводитель для влюбленных в математику отзывы


Отзывы читателей о книге Путеводитель для влюбленных в математику, автор: Эдвард Шейнерман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x