Эдвард Шейнерман - Путеводитель для влюбленных в математику

Тут можно читать онлайн Эдвард Шейнерман - Путеводитель для влюбленных в математику - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент Альпина, год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Путеводитель для влюбленных в математику
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Альпина
  • Год:
    2018
  • Город:
    Москва
  • ISBN:
    978-5-9167-1131-8
  • Рейтинг:
    4/5. Голосов: 21
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Эдвард Шейнерман - Путеводитель для влюбленных в математику краткое содержание

Путеводитель для влюбленных в математику - описание и краткое содержание, автор Эдвард Шейнерман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Принято считать, что математика – наука точная и совершенно скучная, но Эдвард Шейнерман берется доказать обратное. Он утверждает, что математика бывает не менее увлекательной, чем гуманитарные дисциплины. Как объяснить тот факт, что бо́льшая часть окружающих нас чисел начинается на единицу, а тех, что начинаются на девятку, – совсем мало? Каков наилучший путь выиграть выборы, если победителями становятся больше двух кандидатов? Как понять, насколько можно доверять даже самому высокоточному медицинскому тесту? Можно ли покрыть весь пол паркетинами в виде правильных пятиугольников и не оставить зазоров? Как проверить, не сфабрикована ли налоговая отчетность, всего лишь проанализировав первые цифры денежной суммы? Может ли математика пролить свет на вопрос о свободе воли? Ответы на все эти и многие другие вопросы вы найдете в этой книге. Автор приглашает читателя испытать свои силы в решении математических головоломок и станет вашим гидом в захватывающем и комфортном путешествии по миру чисел, геометрических фигур и теории вероятностей. Достаточно школьных знаний алгебры, а итогом станет незабываемая радость знакомства с основами математического мышления.

Путеводитель для влюбленных в математику - читать онлайн бесплатно ознакомительный отрывок

Путеводитель для влюбленных в математику - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Эдвард Шейнерман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вообразим город с миллионом жителей. Один из тысячи болен. Другими словами, 1000 жителей больны и 999 000 здоровы.

Все жители проходят медицинское тестирование. Посмотрим, сколько будет положительных результатов, если тест эффективен на 98 %.

• Среди тысячи больных жителей положительный результат получит большинство, но не все. Их количество 1000 × 0,98 = 980.

• Среди 999 000 здоровых жителей большинство покинет поликлинику с радостной новостью об отсутствии болезни, но 2 % получат ложный результат. Это дает еще 999 000 × 0,02 = 19 980 положительных результатов.

В общей сложности 980 + 19 980 = 20 960 жителей получат положительный результат.

Теперь мы можем правильно ответить на поставленный вопрос: какова вероятность того, что вы больны, если ваш результат тестирования положительный?

Среди двадцати с лишним тысяч людей с положительным результатом всего лишь меньше тысячи действительно больны. Точная вероятность правильности теста в этом случае равна

Вероятность того что вам стоит беспокоиться не равна 98 На самом деле - фото 378

Вероятность того, что вам стоит беспокоиться, не равна 98 %! На самом деле вероятность того, что вы заражены этой редкой болезнью, меньше 5 %!

Стало быть, тесту грош цена? Не совсем.

Во-первых, если ваш лечащий врач имеет веские причины предполагать у вас наличие этого редкого заболевания, вы больше не «случайный» пациент. И если у вас действительно прослеживаются определенные симптомы, вероятность того, что вы заражены, уже не одна тысячная, а скажем, одна четвертая [204] Предположим, вы попали в категорию людей, где 25 % поражены болезнью. Какова вероятность того, что вы заражены, если результат тестирования положительный? Ответ – в конце главы. . В этом случае положительный результат тестирования имеет гораздо больший смысл, чем нестрого обоснованные выводы.

Во-вторых, если болезнь действительно опасна, тест, эффективный на 98 %, позволяет хорошо просеять большие массы населения на предмет наличия или отсутствия болезни. Пациенты с положительным результатом могут пройти вторую диагностику, дающую еще более точные результаты.

Разумеется, отрицательный результат – не повод успокаиваться полностью. Какова вероятность того, что он верен? (Ответ я дам в конце главы.)

Интуиция отказывается принимать тот факт, что тест, надежный на 98 %, может быть настолько несовершенным, но вычисления говорят сами за себя. Впрочем, голые цифры могут обманывать нашу интуицию. Попробуем нарисовать картинку.

Заметим диаграмма не соблюдает пропорции 01 больных эффективность теста - фото 379

Заметим: диаграмма не соблюдает пропорции (0,1 % больных, эффективность теста 98 %).

На чертеже большой прямоугольник изображает все население. Фрагмент прямоугольника слева вверху обозначает группу больных жителей, оставшаяся часть – группу здоровых жителей. Серая полоса сверху – это все жители (из обеих групп) с положительным результатом. Белая область внизу – все жители (опять-таки из обеих групп) с отрицательным результатом

Чертеж иллюстрирует основные детали вышеописанной ситуации:

• болезнь редкая – крохотный фрагмент большого прямоугольника символизирует больную часть населения;

• тест верно диагностирует наличие болезни у подавляющей части больных – почти весь прямоугольник слева вверху закрашен серым;

• тест верно диагностирует отсутствие болезни у подавляющего большинства здоровых людей – огромная область большого прямоугольника остается белой;

• ключевой момент: большая часть серой полосы приходится на здоровых людей, поэтому вы, скорее всего, здоровы, если получили отрицательный результат, но не обязательно больны, если получили положительный.

Условная вероятность [205] Этот раздел предназначен для тех, кто уже изучал теорию вероятностей и хочет освежить свои знания. Другие читатели могут листать до следующего раздела.

Мы вычислили вероятность того, что пациент с положительными результатами медицинского тестирования действительно болен. Мы вообразили гипотетический город, где живет миллион человек, и посчитали численность разных категорий населения. Это был способ ad hoc [206] По особому случаю (лат.). – Прим. пер. . В общем случае мы должны руководствоваться языком теории вероятностей, и я завершу главу разъяснениями по этому поводу.

Для события A мы обозначаем P ( A ) вероятность того, что событие A произойдет, и Путеводитель для влюбленных в математику - изображение 380 – вероятность того, что событие A не произойдет; таким образом, Путеводитель для влюбленных в математику - изображение 381

Для событий A и B мы обозначаем P (AB) вероятность того, что произойдут оба события – и A, и B .

Запись P (A|B) означает вероятность того, что из события A следует событие B ; это условная вероятность того, что A влечет за собой B . Формула Байеса [207] Томас Байес (1702–1761) – британский пресвитерианский священник, богослов и математик. – Прим. пер. говорит нам:

Надежность диагноза вынесенного на основе упомянутого медицинского теста - фото 382

Надежность диагноза, вынесенного на основе упомянутого медицинского теста, может быть выражена на языке математики следующим образом. Пусть S означает, что некто заражен редкой болезнью, а T означает положительный результат тестирования. Таким образом:

• болезнь поразила 0,1 % населения, откуда следует, что P ( S ) = 0,001;

• тест дает верную информацию о наличии или отсутствии заболевания в 98 % случаев, откуда следует, что P ( T | S ) = 0,98;

• тест дает верную информацию о том, что человек здоров, в 98 % случаев, откуда следует, что Путеводитель для влюбленных в математику - изображение 383Иначе говоря, тест ошибочен в 2 % случаев: Путеводитель для влюбленных в математику - изображение 384

Вопрос: какова вероятность того, что пациент с положительным результатом тестирования действительно болен?

Если перевести задачу на язык символов, то мы ищем величину P ( S | T ). По формуле Байеса эта вероятность равна Путеводитель для влюбленных в математику - изображение 385Нам нужно узнать P (ST) и P ( T ).

Начнем хоть с P (ST) , хоть с P (TS) . По формуле Байеса

Мы знаем что P T S 098 а P S 0001 Следовательно P S T - фото 386

Мы знаем, что P ( T | S ) = 0,98, а P ( S ) = 0,001. Следовательно,

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эдвард Шейнерман читать все книги автора по порядку

Эдвард Шейнерман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Путеводитель для влюбленных в математику отзывы


Отзывы читателей о книге Путеводитель для влюбленных в математику, автор: Эдвард Шейнерман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x